Vector braids

Vincent L. Moulton*
FSPM, Postfach 1001 31, University of Bielefeld, 33501 Bielefeld, Germany

Communicated by J.D. Stasheff; received 8 July 1995; received in revised form 8 Junc 1996

Abstract

In this paper we define a new family of groups which generalize the classical braid groups on \mathbb{C}. We denote this family by $\left\{B_{n}^{m}\right\}_{n \geq m+1}$ where $n, m \in \mathbb{N}$. The family $\left\{B_{n}^{1}\right\}_{n \in \mathbb{N}}$ is the set of classical braid groups on n strings. The group B_{n}^{m} is related to the set of motions of n unordered points in \mathbb{C}^{m}, so that at any time during the motion, each $m+1$ of the points span the whole of \mathbb{C}^{m} in the sense of affine geometry. There is a map from B_{n}^{m} to the symmetric group on n letters. We let P_{n}^{m} denote the kernel of this map. In this paper we are mainly interested in finding a presentation of and understanding the group P_{n}^{2}. We give a presentation of a group $P L_{n}$ which maps surjectively onto P_{n}^{2}. We also show the surjection $P L_{n} \rightarrow P_{n}^{2}$ induces an isomorphism on first and second integral homology and conjecture that it is an isomorphism. We then find an infinitesimal presentation of the group P_{n}^{2}. Finally, we also consider the analagous groups where points lie in \mathbb{P}^{m} instead of \mathbb{C}^{m}. These groups generalize of the classical braid groups on the sphere. (C) 1998 Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 57M05; 14J99; 55R65; 55Q99; 55Q52

1. Introduction

Let \mathbb{A}^{m} denote m-dimensional, complex affine space. Let X_{n}^{m} be the space of ordered n-tuples of elements of \mathbb{A}^{m}, with $n \geq m+1$ such that each $m+1$ of the components of each n-tuple span the whole of \mathbb{A}^{m} in the sense of affine geometry. The symmetric group on n letters, Σ_{n}, acts on X_{n}^{m} via permuting the components of each point. This action is fixed point free, and so we can form the quotient space X_{n}^{m} / Σ_{n}.

[^0]Definition 1.1. Let $B_{n}^{m}=\pi_{1}\left(X_{n}^{m} / \Sigma_{n}\right)$ and $P_{n}^{m}=\pi_{1}\left(X_{n}^{m}\right)$. Call these groups the group of n stringed vector braids on \mathbb{A}^{m} and the group of n-stringed pure vector braids on \mathbb{A}^{m}, respectively.

The long exact sequence of a fibration gives us the short exact sequence

$$
\begin{equation*}
1 \rightarrow P_{n}^{m} \rightarrow B_{n}^{m} \rightarrow \Sigma_{n} \rightarrow 1 \tag{1}
\end{equation*}
$$

The space X_{n}^{1} is the well-known configuration space of n points in \mathbb{C} [7]. In general, we can describe the space X_{n}^{m} as

$$
X_{n}^{m}=\underbrace{\mathbb{A}^{m} \times \cdots \times \mathbb{A}^{m}}_{n}-\Lambda
$$

where

$$
\Delta=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{A}^{m}, \text { span }\left\{x_{i_{1}}, \ldots, x_{i_{m+1}}\right\} \neq \mathbb{A}^{m}\right\}
$$

In the case $m=1$, the set Δ is simply the "fat diagonal". In general, we call Δ the determinental variety. Choose coordinates $\left(x_{1}, \ldots, x_{n}\right)$ for \mathbb{A}^{m}, i.e. an isomorphism between \mathbb{A}^{m} and \mathbb{C}^{m}. Let $x_{i}=\left(z_{1 i}, \ldots, z_{m i}\right)$, where $1 \leq i \leq n$ and $z_{i j} \in \mathbb{C}$. Then the defining equations of Δ are all possible $(m+1) \times(m+1)$ minors

$$
\Delta_{i_{1} \ldots i_{m+1}}=\left|\begin{array}{ccc}
1 & \cdots & 1 \\
z_{1 i_{1}} & \cdots & z_{1 i_{m+1}} \\
\vdots & & \vdots \\
z_{m i_{1}} & \cdots & z_{m i_{m+1}}
\end{array}\right|
$$

of the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
z_{11} & z_{12} & \cdots & z_{1 n} \\
\vdots & \vdots & & \vdots \\
z_{m 1} & z_{m 2} & \cdots & z_{m n}
\end{array}\right]
$$

Remark 1.2. Later, we also consider motions of n points in \mathbb{P}^{m} instead of \mathbb{A}^{m} (see Section 2).

The group P_{n}^{1} is the classical pure braid group of n strings on \mathbb{C}. The pure braid group has a very nice presentation, which may be understood geometrically [1]. The main aim of this paper is to discover a geometrical presentation for the group P_{n}^{2} analogous to that of the classical pure braid group. Elements of P_{n}^{2} may be thought of as motions of n points in \mathbb{A}^{2} so that at any time during this motion no three of the n points lie on a line.

We now informally state the main results of this paper. We define a group $P L_{n}$ via a presentation, and a surjective homomorphism $\varphi_{n}: P L_{n} \rightarrow P_{n}^{2}$ (note that, in this
context, $P L_{n}$ does not denote piecewise linear homeomorphisms of real Euclidean n space). The presentation of $P L_{n}$ is given in Definition 7.3. Theorems 7.14 and 7.20 state that the homomorphism φ_{n} induces isomorphisms on the first and second integral homology groups. In light of the fact that both $P L_{n}$ and P_{n}^{2} are finitely generated, that both groups have a presentation with the number of generators equal to the rank of the first homology of the group with integer coefficients, and that the map $P L_{n} \rightarrow P_{n}^{2}$ is surjective, the following conjecture ${ }^{1}$ seems reasonable.

Conjecture 1.3. The homomorphism $\varphi_{n}: P L_{n} \rightarrow P_{n}^{2}$ is an isomorphism.
Despite the fact that it appears to be difficult to prove Conjecture 1.3, it is relatively straightforward to find an infinitesimal presentation for P_{n}^{2}. In Proposition 8.1 we prove that the completion of the group algebra $\mathbb{C}\left[P_{n}^{2}\right]$ with respect to the augmentation ideal is isomorphic to the non-commutative power series ring in the indeterminates $X_{i j k}$, $1 \leq i<j<k \leq n$, modulo the two sided ideal generated by the relations

$$
\begin{aligned}
& {\left[X_{i j k}, X_{r s t}\right] \text { when } i, j, k, r, s, t \text { are distinct, }} \\
& {\left[X_{i j k}, X_{r s k}\right] \text { when } i, j, k, r, s \text { are distinct, }} \\
& {\left[X_{i j k}, X_{j k l}+X_{i k l}+X_{i j l}\right] \text { when } i, j, k, l \text { are distinct }}
\end{aligned}
$$

and

$$
\left[X_{r s t}, X_{1 i j}+\cdots+X_{i-1, i j}+X_{i, i+1, j}+\cdots+X_{i, j-1, j}+X_{i j, j+1}+\cdots+X_{i j n}\right]
$$

which holds when rst is one of the triples

$$
\{1 i j\}, \ldots,\{i-1, i j\},\{i, i+1, j\}, \ldots,\{i, j-1, j\},\{i j, j+1\}, \ldots,\{i j n\}
$$

where $1<i<j<n$.
We now summarize the contents of this paper. First, it is helpful to recall one method for finding a presentation of the classical pure braid group, $P_{n}=P_{n}^{1}$. Recall that the map

$$
p_{n}^{1}: X_{n}^{1} \rightarrow X_{n-1}^{1}
$$

which forgets the last point in each n-tuple is a fibration with fiber equal to \mathbb{C} less $n-1$ points [7]. For $n \geq 3$, the long exact sequence for a fibration provides us with the following sequence:

$$
\begin{equation*}
1 \rightarrow L_{n-1} \rightarrow P_{n} \rightarrow P_{n-1} \rightarrow 1, \tag{2}
\end{equation*}
$$

where L_{n-1} is a free group on $n-1$ generators. In [6] it is shown that this sequence is split. Let $a_{i n}, 1 \leq i \leq n-1$ denote the loop in which the nth point goes around the i th point in the punctured \mathbb{C}. The set of loops $\left\{a_{i n} \mid 1 \leq i \leq n-1\right\}$ generates L_{n-1}. We picture the loop $a_{i n}$ as an element of P_{n} in Fig. 1.

[^1]

Fig. 1. The generator $a_{i n}$ of P_{n}.

Using sequence (2) and the fact that $P_{2}=\mathbb{Z}$, we can inductively prove that the group P_{n} admits a presentation with generators

$$
a_{i j}, \quad 1 \leq i<j \leq n
$$

and defining relations,

$$
\begin{aligned}
& a_{i j}^{-1} a_{r s} a_{i j} \\
& \quad= \begin{cases}a_{r s} & \text { if } r<i<j<s \text { or } i<j<r<s, \\
a_{i s} a_{r s} a_{i s}^{-1} & \text { if } i<r-j<s, \\
a_{i s} a_{j s} a_{r s} a_{j s}^{-1} a_{i s}^{-1} & \text { if } r=i<j<s, \\
a_{i s} a_{j s} a_{i s}^{-1} a_{j s}^{-1} a_{r s} a_{j s} a_{i s} a_{j s}^{-1} a_{i s}^{-1} & \text { if } i<r<j<s .\end{cases}
\end{aligned}
$$

Since the generators of P_{n-1} clearly lift to P_{n}, finding a presentation for P_{n} at each stage involves three main operations. First, we have to add the generators from the fiber group L_{n-1} to the group P_{n-1}. Second, we have to add relations to P_{n} obtained by conjugating each generator of L_{n-1} by the generators of P_{n-1}. Finally, we have to lift relations from P_{n-1} to P_{n}. Note that this last step is particularly simple since, as we mentioned above, sequence (2) is split.

The way in which we find presentations for the groups $P L_{n}$ will be modelled on this approach, although, as we shall see, there will be significant complications.

In Section 2 we define the anologues of P_{n}^{m} with \mathbb{A}^{m} replaced by \mathbb{P}^{m}, and compare these groups to P_{n}^{m} and B_{n}^{m}, respectively. In Section 3 we discuss the groups P_{n}^{m} and B_{n}^{m} for $m \leq n+2$. In Section 4 we show that the map

$$
p_{n}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}
$$

defined by forgetting the last point in each n-tuple is not a fibration for $n \geq 5$. Ilowever, we will be able to repair this defect in some sense by using the fact that the map p_{n}^{2}
is a fibration except over a set of complex codimension one. A consequence of this fact is Corollary 4.2 , which states that there is an exact sequence

$$
\begin{equation*}
\pi_{1}\left(G F_{n}^{2}\right) \rightarrow P_{n}^{2} \rightarrow P_{n-1}^{2} \rightarrow 1 \tag{3}
\end{equation*}
$$

where $G F_{n}^{2}$ denotes the generic fiber of the map p_{n}^{2}.
We use this sequence to find relations within the group P_{n}^{2}. However, there are three major complications which did not occur when we found a presentation for the classical pure braid group P_{n}. First, the fiber is more intricate than in the braid case: it is the complement of lines in \mathbb{A}^{2} rather than a punctured copy of \mathbb{C}. Second, and more importantly, we do not know if the group $\pi_{1}\left(G F_{n}^{2}\right)$ injects into P_{n}^{2}. If this were the case, then Conjecture 1.3 would be true. Third, we have not been able to show that sequence (3) is split, in contrast to the sequence (2) (in fact, it appears unlikely that the map p_{n}^{2} has a section). Thus, it is necessary to develop a new technique, called the reciprocity law, for lifting relations from P_{n-1}^{2} to P_{n}^{2}.

In Section 5 we give a way of describing loops in the complexification of a real arrangement of lines in \mathbb{C}^{2}. In Section 6 we use some techniques from stratified Morse theory to find nice presentations for the fiber groups, $\pi_{1}\left(G F_{n}^{2}\right)$, and we also analyze the relationship between $\pi_{1}\left(G F_{n}^{2}\right)$ and $\pi_{1}\left(F_{k}\right)$, where F_{k} denotes the generic fiber of the projection $p_{k}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}, 1<k<n$, which is defined by forgetting the k th point in each n-tuple. In Section 7 we define the group $P L_{n}$ and a surjective homomorphism $\varphi_{n}: P L_{n} \rightarrow P_{n}^{2}$. We then state the main theorems of this paper, Theorems 7.2, 7.14 and 7.20 , and prove Theorems 7.14 and 7.20 . In Section 8 we find an infinitesimal presentation for the group P_{n}^{2}. In Section 9 we describe the consequences of considering motions of points in \mathbb{P}^{2} as opposed to \mathbb{A}^{2}.

The remaining sections of this paper are devoted to the proof of Theorem 7.2. In Section 10 we see how to conjugate the generators of $\pi_{1}\left(G F_{n}^{2}\right)$ by the generators of P_{n-1}^{2}. In Section 11 we describe a move within the group P_{n}^{2}, called the reciprocity law, which we use to lift relations from P_{n-1}^{2} to P_{n}^{2}. This law is justified in Section 13. Finally, in Section 12 we explain how to lift relations from P_{n-1}^{2} into P_{n}^{2}.

2. Affine versus projective

Our definition of X_{n}^{m} involved looking at points in \mathbb{A}^{m}. By thinking of \mathbb{A}^{m} as being the affine part of \mathbb{P}^{m}, we may extend our definitions to motions of points in \mathbb{P}^{m}.

Let us first consider the classical braid groups. We denote the classical pure braid group of n strings on \mathbb{P}^{1} by Q_{n}. Since \mathbb{P}^{1} is homeomorphic to the two sphere we also see that Q_{n} is the classical pure braid group on the sphere. By considering \mathbb{C} to be the affine part of \mathbb{P}^{1} we get a surjective map $P_{n} \rightarrow Q_{n}$. Note that the following relations, which do not hold in P_{n}, hold in Q_{n} :

$$
\begin{align*}
& a_{12} a_{13} \ldots a_{1 n}=1 \\
& a_{1 k} a_{2 k} \ldots a_{k-1, k} a_{k, k+1} \ldots a_{k n}=1 \quad \text { for } 2 \leq k \leq n \tag{4}
\end{align*}
$$

Fig. 2. The product $a_{12} a_{13} a_{14}$ is trivial in Q_{4}.
(for example see Fig. 2). In fact, if we let Y_{n}^{1} denote the configuration space of n distinct points in \mathbb{P}^{1}, then, using the long exact sequence of the fibration $q_{n}^{1}: Y_{n}^{1} \rightarrow Y_{n-1}^{1}$ obtained by forgetting the nth point [7], it can be proven that these are all of the extra relations that need to be added to the presentation of P_{n} in order to obtain a presentation of Q_{n} (these extra relations arise since the fiber of q_{n}^{1} is homeomorphic to a sphere less $n-1$ points, as opposed to \mathbb{A}^{1} less $n-1$ points). It is also interesting to note that the introduction of these relations into the presentation of P_{n} introduces torsion (e.g. the center of Q_{n} contains an element of order 2 - see Corollary 2.6).

We now generalize these notions to our situation. Let Y_{n}^{m} denote the space of ordered n-tuples in \mathbb{P}^{m}, with $n \geq m+1$ so that each $m+1$ of the points of each n-tuple span the whole of \mathbb{P}^{m}. As with X_{n}^{m}, the symmetric group on n letters acts fixed point freely on Y_{n}^{m} by permuting the components of each point. Define $C_{n}^{m}=\pi_{1}\left(Y_{n}^{m} / \Sigma_{n}\right)$ and $Q_{n}^{m}=\pi_{1}\left(Y_{n}^{m}\right)$. Call these groups the group of n-stringed vector braids on \mathbb{P}^{m} and the pure group of n-stringed vector braids on \mathbb{P}^{m}, respectively. Note that we have natural maps $P_{n}^{m} \rightarrow Q_{n}^{m}$ and $B_{n}^{m} \rightarrow C_{n}^{m}$.

Lemma 2.1. The natural map $P_{n}^{m} \rightarrow Q_{n}^{m}$ is surjective.
Proof. This follows as X_{n}^{m} is a Zariski open subset of the smooth variety Y_{n}^{m}.
Corollary 2.2. The natural map $B_{n}^{m} \rightarrow C_{n}^{m}$ is surjective.
We now define an action of the affine and projective linear groups on X_{n}^{m} and Y_{n}^{m}.
The affine group ${ }^{2} A G L_{m+1}(\mathbb{C})$ acts on the space X_{n}^{m} via the diagonal action. If $n \geq m+1$, the isotropy group of a point is trivial. If $n=m+1$ then $A G L_{m+1}(\mathbb{C})$ acts transitively. It follows that X_{m+1}^{m} is diffeomorphic to $A G L_{m+1}(\mathbb{C})$. Let $\overline{X_{n}^{m}}$ denote the quotient space $X_{n}^{m} / A G L_{m+1}(\mathbb{C})$. Then $A G L_{m+1}(\mathbb{C}) \rightarrow X_{n}^{m} \rightarrow \overline{X_{n}^{m}}$ is a principal $A G L_{m+1}(\mathbb{C})$ bundle. Moreover, it has a section (cf. [11, p. 421]). Hence, we have the following result.

Lemma 2.3. The space X_{n}^{m} is diffeomorphic to $\overline{X_{n}^{m}} \times A G L_{m+1}(\mathbb{C})$.
Corollary 2.4. The group P_{n}^{m} has a central element of infinite order.
Proof. We have $\pi_{1}\left(X_{n}^{m}\right) \cong \pi_{1}\left(\overline{X_{n}^{m}}\right) \times \pi_{1}\left(A G L_{m+1}(\mathbb{C})\right)$. But $\pi_{1}\left(A G L_{m+1}(\mathbb{C})\right)$ is isomorphic to \mathbb{Z}.

The group $P G L_{m+1}(\mathbb{C})$ acts on the space Y_{n}^{m} via the diagonal action. If $n \geq m+2$ the isotropy group of a point is trivial. If $n=m+2$ then $P G L_{m+1}(\mathbb{C})$ acts transitively. It follows that Y_{m+2}^{m} is diffeomorphic to $P G L_{m+1}(\mathbb{C})$. Let $\overline{Y_{n}^{m}}$ denote the quotient space $Y_{n}^{m} / P G L_{m+1}(\mathbb{C})$. Then $P G L_{m+1}(\mathbb{C}) \rightarrow Y_{n}^{m} \rightarrow \overline{Y_{n}^{m}}$ is a principal $P G L_{m+1}(\mathbb{C})$ bundle. It has a section (cf. [11, p. 421]). Hence, we have the following result.

Lemma 2.5. The space Y_{n}^{m} is diffeomorphic to $\overline{Y_{n}^{m}} \times P G L_{m+1}(\mathbb{C})$.
Corollary 2.6. The group Q_{n}^{m} has a central element of order $m+1$.
Proof. We have $\pi_{1}\left(Y_{n}^{m}\right) \cong \pi_{1}\left(\overline{Y_{n}^{m}}\right) \times \pi_{1}\left(P G L_{m+1}(\mathbb{C})\right)$. But $\pi_{1}\left(P G L_{m+1}(\mathbb{C})\right)$ is isomorphic to $\mathbb{Z} /(m+1) \mathbb{Z}$.

We shall see later that the $A G L_{m+1}(\mathbb{C})$ action on X_{n}^{m} and the $P G L_{m+1}(\mathbb{C})$ action on Y_{n}^{m} are useful in understanding some of the properties of the groups P_{n}^{m} and Q_{n}^{m}.

3. Getting started

In this section we study the groups $P_{n}^{m}, Q_{n}^{m}, B_{n}^{m}$ and C_{n}^{m} when $n \leq m+2$.

[^2]Proposition 3.1. The groups P_{m}^{m} and Q_{m+1}^{m} are trivial for all $m \in \mathbb{N}$.
Proof. We begin by extending the definition of the space X_{n}^{m} to the case where $n \leq$ m. Let $X_{n}^{m}, 1 \leq n \leq m-1$, be the space of n-tuples of points in \mathbb{A}^{m} such that the m-tuple spans an affine subspace of maximal dimension. The map $X_{n}^{m} \rightarrow X_{n-1}^{m}$ obtained by forgetting the last point in each n-tuple is a fibration. The fiber of this map is equal to \mathbb{A}^{m} less an affine subspace of complex codimension $m-(n-1)$. Hence, the fiber of each of these maps has trivial fundamental group when $n<m$. Since X_{1}^{m} is diffeomorphic to \mathbb{A}^{m} for each m, we can use the exact sequence of a fibration to inductively show that, for fixed m, X_{m}^{m} has trivial homotopy groups when $n<m$.

A similar argument applies to the space Y_{n}^{m}, giving us the result for Q_{m+1}^{m}.

Corollary 3.2. The natural homomorphisms

$$
B_{m}^{m} \rightarrow \Sigma_{m} \quad \text { and } \quad C_{m+1}^{m} \rightarrow \Sigma_{m+1}
$$

are isomorphisms.
The underlying reason for why the group Q_{m+1}^{m} is trivial and P_{m+1}^{m} is not is that the space \mathbb{A}^{m} less a hyperplane is homotopy equivalent to S^{1}, whereas the space \mathbb{P}^{m} less a hyperplane is contractible.

Proposition 3.3. The group P_{m+1}^{m} is isomorphic to \mathbb{Z} for all $m \in \mathbb{N}$.
Proof. The map $X_{m+1}^{m} \rightarrow X_{m}^{m}$ is a fibration, with fiber equal to \mathbb{C}^{2} less a line. This space is a $K(\mathbb{Z}, 1)$. Since $\pi_{i}\left(X_{m}^{m}\right)$, is trivial for $i \geq 1$ (Proposition 3.1), we obtain the result using the long exact sequence of a fibration.

We immediately get a similar result for Q_{m+2}^{m} as a consequence of Lemma 2.5.
Proposition 3.4. The group P_{m+2}^{m} is isomorphic to $\mathbb{Z} /(m+1) \mathbb{Z}$, for all $m \in \mathbb{N}$.
We now use the $P G L_{m+1}(\mathbb{C})$ action on the space Y_{n}^{m} to find a presentation of the group C_{m+2}^{m}.

Proposition 3.5. The group C_{m+2}^{m} admits a presentation with generators

$$
\sigma_{1}, \ldots, \sigma_{m+1}, \tau
$$

and defining relations

$$
\begin{aligned}
& \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \quad|i-j|>1 \\
& \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \quad 1 \leq i \leq m \\
& \sigma_{i} \tau=\tau \sigma_{i}, \quad 1 \leq i \leq m+1
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{i}^{2}=\tau, \quad 1 \leq i \leq m+1, \\
& \tau^{m+1}=1 .
\end{aligned}
$$

Proof. In Section 2 we saw that the spaces Y_{m+2}^{m} and $P G L_{m+1}(\mathbb{C})$ are diffeomorphic. Let $e_{i}, 1 \leq i \leq m+1$ be the standard basis of \mathbb{C}^{m+1}, and let $g \in P G L_{m+1}(\mathbb{C})$. Then the map

$$
\begin{aligned}
& \theta: P G L_{m+1}(\mathbb{C}) \rightarrow Y_{m+2}^{m} \\
& \theta: g \mapsto\left(g e_{1}, \ldots, g e_{m+1}, g e_{1}+\cdots+g e_{m+1}\right)
\end{aligned}
$$

is a diffeomorphism. We know that Σ_{m+2} acts on the space Y_{m+2}^{m} on the right by permuting coordinates. We now see that Σ_{m+2} also acts on the right of $P G L_{m+1}(\mathbb{C})$. We do this by embedding Σ_{m+2} into $P G L_{m+1}(\mathbb{C})$.

Let $s_{i}, 1 \leq i \leq m+1$ denote the transposition $(i, i+1)$. Then Σ_{m+2} has presentation with generators s_{1}, \ldots, s_{m+1}, and relations

$$
\begin{aligned}
& s_{i} s_{j}=s_{j} s_{i}, \quad|i-j|>1 \\
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, \quad 1 \leq i \leq m \\
& s_{i}^{2}=1, \quad 1 \leq i \leq m+1
\end{aligned}
$$

Let $P_{i} \in P G L_{m+1}(\mathbb{C})$ denote the coset of the permutation matrix corresponding to the transposition s_{i} (i.e. the identity matrix with its i th and $(i+1)$ th columns swapped). Map the element s_{i} to P_{i} for $1 \leq i \leq m$. Let $P_{m+1} \in P G L_{m+1}(\mathbb{C})$ be the coset of the matrix

$$
\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -1 \\
0 & 1 & \cdots & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -1 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right]
$$

Map the element s_{m+1} to P_{m+1}. Matrix computations show that this map may be extended to an injective homomorphism from Σ_{m+2} to $P G L_{m+1}(\mathbb{C})$.

Let Σ_{m+2} act on the right of $P G L_{m+2}(\mathbb{C})$ by group multiplication. Note that

$$
\begin{aligned}
\theta\left(g P_{i}\right) & =\left(g P_{i} e_{1}, \ldots, g P_{i} e_{m+1}, g P_{i}\left(e_{1}+\cdots+e_{m+1}\right)\right) \\
& =\left(g e_{s_{i}(1)}, \ldots, e q_{s_{i}(m+1)}, g e_{s_{i}(1)}+\cdots+g e_{s_{i}(m+1)}\right) \\
& =\theta(g) s_{i}
\end{aligned}
$$

when $1 \leq i \leq m$. This is because $P_{i} e_{j}$ is equal to the j th column of P_{i}. Also,

$$
\theta\left(g P_{m+1}\right)=\left(e_{1}, \ldots, e_{m},-g\left(e_{1}+\cdots+e_{m+1}\right),-g e_{m+1}\right)
$$

Thus, θ is Σ_{m+2} equivariant and $P G L_{m+2}(\mathbb{C}) / \Sigma_{m+2}$ is diffeomorphic to $Y_{m+2}^{m} / \Sigma_{m+2}$.

Note that $P G L_{m+2}(\mathbb{C})$ is isomorphic to $P S L_{m+1}(\mathbb{C})$. Consequently, $S L_{n}(\mathbb{C})$ is the universal cover of $P G L_{n}(\mathbb{C})$. The natural homomorphism $S L_{m+1}(\mathbb{C}) \xrightarrow{\pi} P S L_{m+1}(\mathbb{C})$ is a $\mathbb{Z} /(m+1) \mathbb{Z}$ covering whose kernel is generated by the diagonal matrix τ whose diagonal entries are all equal to $\exp (2 \pi i /(m+1))$. Let $G=\pi^{-1}\left(\Sigma_{m+2}\right)$, i.e. the pullback of the natural extension $S L_{m+1}(\mathbb{C}) \rightarrow P S L_{m+1}(\mathbb{C})$ along the embedding that we chose for Σ_{m+1} into $P G L_{m+1}(\mathbb{C})$. Then we have the short exact sequence

$$
1 \rightarrow \mathbb{Z} /(m+1) \mathbb{Z} \xrightarrow{\pi} G \rightarrow \Sigma_{m+2} \rightarrow 1
$$

We use this now to show that G is given by the same presentation as that stated in the theorem. Let $\omega=\exp (2 \pi i / 2(m+1))$ and $\sigma_{i}:=\omega P_{i}, 1 \leq i \leq m+1$. Then each of these matrices lies in $S L_{m+1}(\mathbb{C})$. Use the matrix σ_{i} as a lift of P_{i} for $1 \leq i \leq m+1$ and the matrix τ as the generator of the image of π. Simple matrix calculations show that the stated relations between the matrices $\sigma_{i}, 1 \leq i \leq m+1$, and τ hold in G.

To complete the proof we have to show that G is isomorphic to C_{m+2}^{m}. First, note that since $\mathbb{Z} /(m+1) \mathbb{Z}$ is central in G we have the isomorphism

$$
S L_{m+1}(\mathbb{C}) / G \cong\left[\mathbb{Z} /(m+1) \mathbb{Z} \backslash S L_{m+1}(\mathbb{C})\right] / \Sigma_{m+2}
$$

But $[\mathbb{Z} /(m+1) \mathbb{Z}] \backslash S L_{m+1}(\mathbb{C})$ is isomorphic to $P S L_{m+1}(\mathbb{C})$, which is in turn isomorphic to Y_{m+2}^{m}. Hence, $S L_{m+1}(\mathbb{C}) / G$ is isomorphic to $Y_{m+2}^{m} / \Sigma_{m+2}$. Since $S L_{m+1}(\mathbb{C})$ is the universal cover of $S L_{m+1}(\mathbb{C}) / G$, we conclude that

$$
G \cong \pi_{1}\left(Y_{m+2}^{m} / \Sigma_{m+2}\right) \cong C_{m+2}^{m}
$$

Remark 3.6. Note that the group C_{m+2}^{m} of Proposition 3.5 has a central cyclic subgroup of order $m+1$, with cokernel given by the symmetric group on $m+1$ letters. Such extensions are characterized by the second cohomology group of the symmetric group with coefficients in $\mathbb{Z} /(m+1) \mathbb{Z}$. Thus, if m is even, the extension is trivial, so that C_{m+2}^{m} is isomorphic to a direct product of Σ_{m+2} and $\mathbb{Z} /(m+1) \mathbb{Z}$.

4. Forgetting a point

Let $p_{n}^{m}: X_{n}^{m} \rightarrow X_{n-1}^{m}$ denote the map which takes n-tuples in X_{n}^{m} to ($n-1$)-tuples in X_{n-1}^{m} by forgetting the nth point. In [7] it is shown that the map p_{n}^{1} is a fibration for all $n \geq 2$. However, in general, these maps fail to be fibrations when m is greater than one. For example, in the case $m=2$ we have the following result.

Proposition 4.1. The map p_{n}^{2} is not a fibration for $n \geq 5$.
Proof. First, consider the case when $n=5$. Let $\left(x_{1}, \ldots, x_{n}\right) \in X_{n}^{2}$ and let $L_{i j}, 1 \leq i<j$ $\leq n$, denote the line through the points x_{i} and x_{j}, in the fiber of p_{n+1}^{2} over $\left(x_{1}, \ldots, x_{n}\right)$. Then the fiber over the point $\left(x_{1}, \ldots, x_{n}\right)$ will be equal to Al^{2} less the union of the lines $L_{i j}$. The homotopy type of the fibers will not be constant since some of the fibers will

Fig. 3. Parallel problems.

Fig. 4. How degenerate fibers can occur.
contain parallel lines, which do not intersect in \mathbb{A}^{2} (see Fig. 3 for a non-generic fiber of the map $p_{5}^{2}: X_{5}^{2} \rightarrow X_{4}^{2}$). This problem occurs for all $n \geq 5$.

In the case when $n \geq 7$ another type of degeneration also occurs. We refer to Fig. 4. This is a real picture of the fibers of p_{n}^{2} which shows how one may get non-generic fibers. When lines with disjoint indices intersect only in double points we are in the generic situation. However, we see in Fig. 4 that as the line $L_{i j}$ moves upwards it passes through a double point giving us a triple intersection. The homotopy type of the fiber changes when we obtain triple points (for example, even the fundamental group of the fiber changes [16]); we no longer have a fibration.

Given that the map p_{n}^{2} fails to be a fibration when $n \geq 5$, it might seem hopeless to use the same method that we used in Section 1 to find a presentation of the pure braid group in finding a presentation for the group P_{n}^{2}. However, we are able to partially salvage this situation using results contained in [14]. Since $p_{n}^{m}: X_{n}^{m} \rightarrow X_{n-1}^{m}$ is a surjective algebraic map, it is a topological fibration except over a subset of X_{n-1}^{m} of complex codimension one [14, Comment 0.4, p. 95], which we call the discriminant locus. The fibers of the map p_{n}^{m} degencrate over this locus as described in the previous proposition. Moreover, if we choose a basepoint in the complement of this subset and let $G F_{n}^{m}$ denote the fiber over this point (i.e. the generic fiber), then [14, Lemma, p. 103] implies the following result.

Lemma 4.2. The sequence

$$
\pi_{1}\left(G F_{n}^{m}\right) \rightarrow \pi_{1}\left(X_{n}^{m}\right) \xrightarrow{\left(p_{n}^{m}\right)_{x}} \pi\left(X_{n}^{m}\right) \rightarrow 1
$$

is exact.

In the case $m=2$ we have the exact sequence

$$
\begin{equation*}
\pi_{1}\left(G F_{n}^{2}\right) \rightarrow P_{n}^{2} \rightarrow P_{n-1}^{2} \rightarrow 1 \tag{5}
\end{equation*}
$$

for each $n \geq 4$. This sequence is analogous to the short exact sequence (2), where $n \geq 3$, involving the classical pure braid groups. Note that if the group $\pi_{1}\left(G F_{n}^{2}\right)$ injects into P_{n}^{2}, then Conjecture 1.3 is true.

We close this section by noting that we also have the map $q_{n}^{m}: Y_{n}^{m} \rightarrow Y_{n-1}^{m}$, obtained by forgetting the nth point. Proposition 4.1 is also true for the map q_{n}^{m}. In fact, we can say slightly more in this case.

Proposition 4.3. The map $q_{n}^{2}: Y_{n}^{2} \rightarrow Y_{n-1}^{2}$ is a fibration for $n=4,5$ and 6. However, the map q_{n}^{2} is not a fibration for $n \geq 7$.

Proof. First, consider the cases when n is equal to 4,5 and 6 . Let $\left(x_{1}, \ldots, x_{n}\right) \in X_{n}^{2}$ and let $L_{i j}, 1 \leq i<j \leq n$, denote the line through the points x_{i} and x_{j}, in the fiber of p_{n+1}^{2} over $\left(x_{1}, \ldots, x_{n}\right)$. Then the fiber over the point $\left(x_{1}, \ldots, x_{n}\right)$ will be equal to \mathbb{P}^{2} less the union of the lines $L_{i j}$. When $n=5$ and 6 , the lines $L_{i j}$ and $L_{k l}$ only intersect in a double point when $\{i, j\} \cap\{k, l\}=\emptyset$. Since the combinatorics of all of the fibers are the same, they are all diffeomorphic by [12, Theorem 4.3]. As we are fibering over a connected manifold, the proof follows.

In the case when $n \geq 7$ we can use the same argument to the one that given in Proposition 4.1 using Fig. 4.

When $n \leq 6$, define F_{n}^{2} to be the fiber of the map $q_{n}^{2}: Y_{n}^{2} \rightarrow Y_{n-1}^{2}$ (in view of Proposition 4.3, this makes sense). Then we have the following lemma.

Fig. 5.
Lemma 4.4. For $n=5$ and 6 the sequence

$$
1 \rightarrow \pi_{1}\left(F_{n}^{2}\right) \rightarrow Q_{n}^{2} \rightarrow Q_{n-1}^{2} \rightarrow 1
$$

is exact.
Proof. Since Y_{4}^{2} is diffeomorphic to $P G L_{m+1}(\mathbb{C})$ the group $\pi_{2}\left(Y_{4}^{2}\right)$ is trivial. Thus, the case $n=5$ is an immediate consequence of Proposition 4.1 and the long exact sequence of fibration.

The case $n=5$ also yields the exact sequence

$$
\pi_{2}\left(F_{5}^{2}\right) \rightarrow \pi_{2}\left(Y_{5}^{2}\right) \rightarrow \pi_{2}\left(Y_{4}^{2}\right)
$$

We now show that F_{5}^{2} is a $K\left(\pi_{1}\left(F_{5}^{2}\right), 1\right)$ space, which implies that the group $\pi_{2}\left(X_{5}^{2}\right)$ vanishes. Consider the pencil of lines in F_{5}^{2}, through the point b (see Fig. 5). This pencil fibers F_{5}^{2} (i.e. if we define a map from F_{5}^{2} to b by sending each line in the pencil to b, then this map is a fibration). The base is \mathbb{P}^{1} less three points and the fiber is \mathbb{P}^{1} less four points. Hence, F_{5}^{2} is a $K(\pi, 1)$ space.

By applying Proposition 4.1 and using the long exact sequence of a fibration once more we obtain the result for the case $n=6$.

5. Getting around

In this section we find generators for the fundamental group of the complement of a set of complexified real lines in \mathbb{A}^{2}. Some of the material in this section is drawn from [18].

We begin by stating some conventions that we will use from now on. Fix a real structure on \mathbb{A}^{n}. We denote the real points of this structure by $\mathbb{A}^{n}(\mathbb{R})$. If V is an affine linear subspace of \mathbb{A}^{n} then let $V(\mathbb{R})$ be equal to $V \cap \mathbb{A}^{n}(\mathbb{R})$.

Let $\left\{L_{i}(\mathbb{R})\right\}$ be a set of oriented lines in $\mathbb{A}^{2}(\mathbb{R})$. Denote the union of the $L_{i}(\mathbb{R})$ by $\mathscr{A}(\mathbb{R})$. Let $\left(x_{1}, x_{2}\right)$ be coordinates for $\mathbb{A}^{2}(\mathbb{R})$. Then $\left(x_{1}+\mathrm{i} y_{1}, x_{2}+\mathrm{i} y_{2}\right), y_{1}, y_{2} \in \mathbb{R}$, are coordinates for \mathbb{A}^{2}. Once we have chosen coordinates for \mathbb{A}^{2} we will abuse notation and write \mathbb{C}^{2} for \mathbb{A}^{2} and \mathbb{R}^{2} for $\mathbb{A}^{2}(\mathbb{R})$. Let $\varepsilon>0$ be an arbitrary real number. It will be convenient to work in the tubular neighborhood $N_{\varepsilon}=\left\{\left(x_{1}+\mathrm{i} y_{1}, x_{2}+\mathrm{i} y_{2}\right) \in \mathbb{C}^{2} \mid y_{1}^{2}+y_{2}^{2} \leq\right.$ $\varepsilon\}-\mathscr{A}$ of $\mathbb{R}^{2}-\mathscr{A}(\mathbb{R})$. To justify this we require the following proposition.

Proposition 5.1. For all $\varepsilon>0$, the set N_{ε} is homotopy equivalent to $\mathbb{C}^{2}-\mathscr{A}$.
Proof. We prove this fact using stratified Morse theory [8]. Begin by stratifying the space \mathbb{C}^{2} using the arrangement \mathscr{A} (for details see [8, p. 245]). Let $f: \mathbb{C}^{2} \rightarrow \mathbb{R}$ be the function defined by the formula $f\left(x_{1}+\mathrm{i} y_{1}, x_{2}+\mathrm{i} y_{2}\right)=y_{1}^{2}+y_{2}^{2}$. This is a Morse function (in the sense of stratified Morse theory) on the stratified space \mathbb{C}^{2}. Let $X_{>t}$ denote the set of points x in $\mathbb{C}^{2}-\mathscr{A}$ such that $f(x)>t$. Outside the set of points $x \in \mathbb{C}^{2}$ where $f(x)<\varepsilon$ the function f has no critical points. Hence, the set $X_{>t}$ is homotopy equivalent to the set N_{ε} for any $t \geq \varepsilon$.

Let $L(\mathbb{R})$ be a generic, oriented line in $\mathbb{R}^{2}-\mathscr{A}(\mathbb{R})$ and let v be a vector which orients $L(\mathbb{R})$. Its complexification has a canonical orientation and the orientation of the frame formed by the vectors v and $\mathrm{i} v$ agrees with this orientation. Let a be any point in $L(\mathbb{R})$. Then we let $\tilde{a} \in L$ denote the point which is distance ε from a in the direction iv. Let $p \in L(\mathbb{R})-\mathscr{A}(\mathbb{R})$ and $q \in L(\mathbb{R}) \cap \mathscr{A}(\mathbb{R})$. We now define a loop in N_{ε} based at the point p (see Fig. 6). First, move in the direction $\mathrm{i} v$ from point p to point \tilde{p}. Then move along the real line in L, which joins \tilde{p} and \tilde{q} towards \tilde{q}. On reaching the point \tilde{q}, pick a loop l_{q} with center q and of radius ε within L. Now, go around this loop in the positive direction with respect to the orientation of L. Finally, return to p along the same path taken to \tilde{q} from the point p. We call this loop the loop in L, based at p, which goes around the point q.

Remark 5.2. The homotopy class of the loop which we have just defined depends only upon the choices of $L(\mathbb{R})$, its orientation and the points p and q.

Denote the set of points in $L(\mathbb{R}) \cap \mathscr{A}(\mathbb{R})$ by $\left\{q_{i}\right\}$. Let ζ_{i} be the loop in L, based at p which goes around q_{i}. Theorems of Lefschetz and Zariski (cf. [8, Ch. 2]) immediately imply the following result.

Proposition 5.3. The set of loops $\left\{\zeta_{i}\right\}$ generates $\pi_{1}\left(\mathbb{C}^{2}-\mathscr{A}, p\right)$.
Remark 5.4. If we instead considered $\mathscr{A}(\mathbb{R})$ as being an arrangement of lines in $\mathbb{P}^{2}(\mathbb{R})$, then the loops ζ_{i} would generate $\pi_{1}\left(\mathbb{P}^{2}-\mathscr{A}, p\right)$ (cf. Lemma 2.1).

Fig. 6. The loop in L, based at p, which goes around the point q.

We now need a pair of lemmas which will help us manipulate loops in the complement of a set of complexified real lines in $\mathbb{A}^{2}(\mathbb{R})$. To do this we first define a hop. Let $H(\mathbb{R})$ an arbitrary real line in $\mathbb{A}^{2}(\mathbb{R})$. Pick a point $p \in \mathbb{A}^{2}(\mathbb{R})-H(\mathbb{R})$ near to the line $H(\mathbb{R})$. The line $H(\mathbb{R})$ divides $\mathbb{A}^{2}(\mathbb{R})$ into two regions. Let $q \in \mathbb{A}^{2}(\mathbb{R})$ be a point in $\mathbb{A}^{2}(\mathbb{R})-H(\mathbb{R})$ close to p that lies in the connected component of $\mathbb{A}^{2}(\mathbb{R})-H(\mathbb{R})$ not containing the point p. To hop from the point p to the point q in $\mathbb{A}^{2}-H$, choose a line $L(\mathbb{R})$ joining the points p and q and follow a loop in L from p to q, in the negative direction with respect to the canonical orientation of L.

The first lemma is local in nature. Let p be an element of $\mathbb{A}^{2}(\mathbb{R})$. Suppose that n lines $L_{j}(\mathbb{R}), 1 \leq j \leq n$, pass through the point p. Label the lines from $1-n$ in anticlockwise order. Choose a line $L(\mathbb{R})$ passing through p, which lies between the lines $L_{1}(\mathbb{R})$ and $L_{n}(\mathbb{R})$. Let C be a small circle in $\mathbb{A}^{2}(\mathbb{R})$ centered at p. Let $a, b \in L(\mathbb{R})$ denote the two points of intersection of the circle C with $L(\mathbb{R})$. (see Fig. 7). Let γ be the path in $\mathbb{A}^{2}-\bigcup L_{j}$, joining the points a and b, which is obtained by following the circle C in the anticlockwise direction and hopping over each line $L_{j}(\mathbb{R})$. Let γ^{\prime} be the path in $\mathbb{A}^{2}-\bigcup L_{j}$, joining points a and b, which is obtained by following the circle C in the clockwise direction and hopping over each line $L_{j}(\mathbb{R})$.

Lemma 5.5. The paths γ and γ^{\prime} are homotopic in $\mathbb{A}^{2}-\bigcup L_{j}$, relative to their endpoints a and b.

Proof. Let v be the vector in $L(\mathbb{R})$ from the point a to the point p. Let P_{v} be the plane $\mathbb{A}^{2}(\mathbb{R})+\mathrm{i} v$. Then the intersection $P_{v} \cap L_{j}$ is empty for $1 \leq j \leq n$. Hence, the intersection $P_{v} \cap\left[\bigcup L_{j}\right]$ is empty.

Fig. 7.

If p is an element of $\mathbb{A}^{2}(\mathbb{R})$ then let \tilde{p} denote the point $a+\mathrm{i} v$ in P_{v}. Let $C+\mathrm{i} v$ denote the circle in P_{v} which lies above C. Let ρ be the path obtained by going in direction $\mathrm{i} v$ from a to \tilde{a}, going along $C+\mathrm{i} v$ in the anticlockwise direction and finally by going in direction $-\mathrm{i} v$ to b. The path ρ is homotopic to γ relative to the points a and b. Let ρ^{\prime} be the path obtained by going in direction iv from a to \tilde{a}, going along $C+\mathrm{i} v$ in the clockwise direction and finally by going in direction $-\mathrm{i} v$ to b. The path ρ^{\prime} is homotopic to γ^{\prime} relative to the points a and b.

To conclude the proof we see that the paths ρ and ρ^{\prime} are homotopic. This is because the paths contained in $C+\mathrm{i} v$ which were used to define ρ and ρ^{\prime} are homotopic in P_{v} relative to \tilde{a} and \tilde{b}.

The second lemma is global in nature. Let D be a bounded region contained in $\mathbb{A}^{2}(\mathbb{R})$ which is diffeomorphic to a real closed disc in \mathbb{R}^{2}. Also, assume that the boundary of D is smooth. Let $\mathscr{A}(\mathbb{R})$ be an arrangement of real lines contained in $\mathbb{A}^{2}(\mathbb{R})$ such that each line in $\mathscr{A}(\mathbb{R})$ is tranverse to the boundary of D and the number of components of $D-\mathscr{A}(\mathbb{R})$ is finite. Also, assume that no three lines in $\mathscr{A}(\mathbb{R})$ intersect in a point in D and that the boundary of D contains none of the multiple points of $\mathscr{A}(\mathbb{R})$ (see Fig. 8) (thus, all of the intersection points of the arrangement $\mathscr{A}(\mathbb{R})$ contained within D are double points). Let $M(\mathbb{R})$ denote the set $D-\mathscr{A}(\mathbb{R})$ and let M be the set

$$
\left\{u+\mathrm{i} v \mid u \in M(\mathbb{R}), v \in \mathbb{R}^{2}, \text { and }\|v\|<\varepsilon\right\} .
$$

We now define some loops in M. Let $\left\{L_{\alpha}(\mathbb{R}) \mid \alpha \in A\right\}$, denote the set of line segments in $M(\mathbb{R})$, obtained by intersecting $\mathscr{A}(\mathbb{R})$ with the set D. Let p be a base point of $M(\mathbb{R})$. For each line segment $L_{x}(\mathbb{R})$ we define a loop l_{α} in M, based at p, as follows. Pick a point q on the line segment $L_{x}(\mathbb{R})$ which lies in between any two intersection points. Let $l_{\alpha}(\mathbb{R})$ be a path in D joining the point p and q which intersects each line segment $L_{x}(\mathbb{R})$ transversely only once and avoids all intersection points. We now define the

Fig. 8.
loop l_{α}. Follow the path $l_{\alpha}(\mathbb{R})$, hopping over any line segment, until reaching the line $L_{\alpha}(\mathbb{R})$. Then choose a line $L(\mathbb{R})$ passing through q, which is transverse to $L_{\alpha}(\mathbb{R})$. Now follow a small loop in L, which encircles L_{α}, in the positive direction with respect to the orientation of L. Finally, return to the point p along the same path which was taken outward from p.

Lemma 5.6. The group $\pi_{1}(M, p)$ admits a presentation with generators $l_{\alpha}, \alpha \in A$ and relations

$$
\left[l_{\alpha}, l_{\beta}\right]=1 \quad \text { if } L_{\alpha}(\mathbb{R}) \cap L_{\beta}(\mathbb{R}) \neq \emptyset
$$

Proof. First, we show that there exists a Morse function on the set M, in the sense of stratified Morse theory [8]. To do this we take a family of real expanding sets $B_{t}(\mathbb{R}), 0 \leq t \leq 1$, such that $B_{0}(\mathbb{R})=\{p\}$ and $B_{1}(\mathbb{R})=M(\mathbb{R})$, which grow in the following way. The family first intersects each line segment $L_{\alpha}(\mathbb{R})$ tangentially, and it also envelops each double point one at a time. By taking the distance from p to points in the set B_{i} we construct the required Morse function on M.

Now, using stratified Morse theory, we find a presentation for the group $\pi_{1}(M, p)$. First, we have to add a generator l_{α}^{\prime} for each line segment L_{α} when the family $B_{t}(\mathbb{R})$ first crosses line segment L_{α}. The generator l_{α}^{\prime} can be chosen to be the composition of a path, which hops over each line segment once, from p to $L_{\alpha}(\mathbb{R})$ and a loop which goes around $L_{\alpha}(\mathbb{P})$, by following a small loop in a complex line L, in the positive direction with respect to the orientation of L. Also, using Morse theory again, on encountering
each double point $L_{\alpha}(\mathbb{R}) \cap L_{\beta}(\mathbb{R}) \neq \emptyset$, we have to add a commutator relation $\left[l_{\alpha}^{\prime}, l_{\beta}^{\prime}\right]=1$. Note that these are the only relations that we require, as there are no other intersection points of $\mathscr{A}(\mathbb{R})$ in $M(\mathbb{R})$.
To complete the proof we show that the loops l_{α}^{\prime} and l_{α} are homotopic in M. The loops l_{α} and l_{α}^{\prime} were defined by following a path to the line segment $L_{\alpha}(\mathbb{R})$, which hopped over any line segment once, and then by following a small loop which encircled $L_{\alpha}(\mathbb{R})$. Note that $L_{\alpha}(\mathbb{R})$ intersects any other line segment in at most a double point. Thus, we can homotop the small loop used in the definition of l_{α}^{\prime} past any intersection points in $L_{\alpha}(\mathbb{R})$, into the small loop which was used to define the loop l_{α}. In this way, we can deform the loop l_{α}^{\prime} into a new loop $l_{\alpha}^{\prime \prime}$ which is based at p, hops over every line segment on its way to $L_{\alpha}(\mathbb{R})$, and which follows the same small loop around $L_{\alpha}(\mathbb{R})$ as the loop l_{α}. Thus, we are reduced to showing that we are able to homotop the path used to define the loop $l_{\alpha}^{\prime \prime}$ into the path which is used to define l_{α}. This can be done by deforming the path which defines $l_{\alpha}^{\prime \prime}$, over the double points in $\mathscr{A}(\mathbb{R})$, into the path which defines the loop l_{α}. We are able to do this using Lemma 5.5.

6. The Generic fiber

In this section we choose a basepoint for the space X_{n}^{2}. We then find a natural presentation for the fundamental group of the generic fiber, $G F_{n}^{2}$, of the map $p_{n}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}$.

To give us some flexibility later, we begin by finding a contractible subset B of $X_{n}^{2}(\mathbb{R})$ which we will use to "fatten the base point". Standard homotopy theory implies that the inclusion $\left(X_{n}^{2}, *\right) \hookrightarrow\left(X_{n}^{2}, B\right)$ induces a canonical isomorphism $\pi_{1}\left(X_{n}^{2}, *\right) \hookrightarrow$ $\pi_{1}\left(X_{n}^{2}, B\right)$ for all $* \in B$. Hence, elements of $\pi_{1}\left(X_{n}^{2}\right)$ may be represented by paths whose endpoints lie within B.

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an element of $X_{n}^{2}(\mathbb{R})$ which is mapped to the point $\left(x_{1}, \ldots\right.$, x_{n-1}) by the map p_{n}^{2}. Denote the line in the fiber of p_{n}^{2} over the point x, which passes through x_{i} and x_{j}, by $L_{i j}$. Let \mathscr{A}_{x} be equal to the union of the lines $L_{i j}, 1 \leq i<j \leq n-1$. The fiber of the map p_{n}^{2} over the point $\left(x_{1}, \ldots, x_{n-1}\right) \in X_{n-1}^{2}$ is then equal to $\mathbb{A}^{2}-\mathscr{A}_{x}$. Choose coordinates for \mathbb{A}^{2}. Define $\psi: \mathbb{C} \rightarrow \mathbb{C}^{2}$, by setting $\psi(t)=\left(t, t^{2}\right)$, i.e. the rational normal curve. Define the set B to be equal to

$$
\left\{\left(\psi\left(t_{1}\right), \ldots, \psi\left(t_{n}\right)\right) \mid t_{i} \in \mathbb{R}, t_{1} \leq \cdots \leq t_{n}\right\}
$$

Since the curve $\psi(\mathbb{R})$ is convex, the set B is a subset of $X_{n}^{2}(\mathbb{R})$. The set B is clearly contractible.

The fiber p_{n}^{2} over a point in B is not necessarily generic. When choosing a base point in X_{n}^{2} we need to ensure that this is the case and thus we impose two extra conditions on points in B. To do this we first define some new lines in the fiber of p_{n}^{2}. Consider the curve $\psi(\mathbb{R})$ as being a subset of in $\mathbb{P}^{2}(\mathbb{R})$, i.e. the parabola $\psi(\mathbb{R})$ together with an extra point at infinity. Let $L_{k}^{\infty}(\mathbb{R}), 1 \leq k \leq n$, be equal to the line in \mathbb{R}^{2} which passes through the point x_{k} and the extra point at infinity determined by $\psi(\mathbb{R})$ (so that the lines $L_{k}^{\infty}(\mathbb{R}), 1 \leq k \leq n$, are parallel to one another). Orient the line
$L_{k}^{\infty}(\mathbb{R})$ in the direction pointing to the interior of $\psi(\mathbb{R})$. We now specify the two extra conditions that we impose on points in B;

- Divide the line $L_{k}^{\infty}(\mathbb{R}), 1 \leq k \leq n-1$, into three segments as follows. Let the first segment be the portion of $L_{k}^{\infty}(\mathbb{R})$ contained in the interior of $\psi(\mathbb{R})$. Let the second segment be the portion of the line $L_{k}^{\infty}(\mathbb{R})$ between the point $x_{k} \in L_{k}^{\infty}(\mathbb{R})$ and the point $L_{12}(\mathbb{R}) \cap L_{k}^{\infty}(\mathbb{R})$. Let the third segment be the remaining portion of $L_{k}^{\infty}(\mathbb{R})$. A point x of B satisfies the lexcigon condition if it satisfics the following thrce properties:

1. For each $k+2 \leq j \leq n$, the line $L_{i j}(\mathbb{R}), 1 \leq i \leq k-1$, intersects the first segment of the line $L_{k}^{\infty}(\mathbb{R})$ in a point which lies above the line $L_{i, j-1}(\mathbb{R}), 1 \leq$ $i \leq k$.
2. The lines $L_{i j}(\mathbb{R}), 1 \leq i \leq j<k$, intersect the the second segment of the line $L_{k}^{\infty}(\mathbb{R})$ in lexcigongraphical order with respect to the orientation of $L_{k}^{\infty}(\mathbb{R})$.
3. The lines $L_{i j}(\mathbb{R}), k+1 \leq i<j \leq n$, intersect the third segment of $L_{k}^{\infty}(\mathbb{R})$ in reverse lexcigongraphical order with respect to the orientation of $L_{k}^{\infty}(\mathbb{R})$.

- The line $L_{k}^{\infty}(\mathbb{R}), 1 \leq k \leq n-1$ and the line $L_{k n}(\mathbb{R})$ divide $\mathbb{A}^{2}(\mathbb{R})$ into four regions. Two of these regions do not contain the curve $\psi(\mathbb{R})$. A point x of B satisfies the double condition if the regions not containing the curve $\psi(\mathbb{R})$ do not contain any double points of the arrangement \mathscr{A}_{x}, for all $1 \leq k \leq n-1$.

Remark 6.1. The lexcigon condition ensures that we do not get parallel lines in the fiber of p_{n}^{2} over x as in Fig. 3. The double condition ensures that we only get double points in \mathscr{S}_{x} away from the points x_{k}. Hence, we avoid degenerations in the fiber of p_{n}^{2} like the one illustrated in Fig. 4.

Define the set S_{n} to be the set of points contained in B which satisfy the lexcigon and triple conditions. Note that $p_{n}^{2}\left(S_{n}\right)$ is equal to S_{n-1}.

Lemma 6.2. The space S_{n} is homeomorphic to the the space $S_{n-1} \times \mathbb{R}$ for all $n \geq 2$.
Proof. We proceed by induction on n. When $n=1$ the set S_{1} is equal to \mathbb{R}. Assume the result up to $n-1$. Let $\left(x_{1}, \ldots, x_{n-1}\right) \in S_{n-1}$. Let c be the final point to the right of x_{n-1} on $\psi(\mathbb{R})$, for which ($x_{1}, \ldots, x_{n-1}, c$) fails to satisfy both the lexcigon and double conditions. The set of points, F, to the right of c on $\psi(\mathbb{R})$ is homeomorphic to \mathbb{R}. Moreover, the point ($x_{1}, \ldots, x_{n-1}, f$) is in S_{n} for all $f \in F$. The result follows.

Corollary 6.3. The set S_{n} is contractible for each $n \geq 1$.
We can now inductively choose a base point for X_{n}^{2}. Choose any point in S_{1}. Let $b=\left(b_{1}, \ldots, b_{n}\right)$ be a fixed point in the set S_{n}, with b lying over the basepoint previously chosen in S_{n-1}. From now on define b to be the base point of X_{n}^{2}, and we consider $G F_{n}^{2}$ as being the (generic) fiber of p_{n}^{2} over this basepoint. For example, see Fig. 9 for a picture of the generic fiber over the point $b \in X_{4}^{2}$.

Fig. 9. The generic fiber.

Now, let $p_{k}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}$ be the projection which forgets the k th point, for $1 \leq k \leq$ $n-1$. The set S_{n} was specifically chosen so that the following result would be true.

Proposition 6.4. The fiber of the map p_{n}^{2} over any point in S_{n-1} is generic. Moreover, the oriented matroid determined by the real arrangement of lines in the fiber of the map $p_{k}^{2}, 1 \leq k \leq n$, over any point in S_{n-1} is isomorphic to that determined by the real arrangement of lines in $G F_{n}^{2}$.

Let F_{k} denote the fiber of the map $p_{k}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}$ over the a point in S_{n-1}. By [2, Theorem 5.3] we immediately obtain the following result.

Corollary 6.5. The groups $\pi_{1}\left(G F_{n}^{2}\right)$ and $\pi_{1}\left(F_{k}\right)$ are isomorphic for $1 \leq k \leq n-1$.
We shall now find a presentation for the group $\pi_{1}\left(G F_{n}^{2}, b_{n}\right)$, where $G F_{n}^{2}=$ $\mathbb{C}^{2}-\mathscr{A}_{b}$ is the generic fiber over the basepoint $b=\left(b_{1}, \ldots, b_{n-1}\right) \in X_{n-1}$. We work in the neighborhood N_{ε} defined in Section 5. Note that since N_{ε} is homotopy equivalent to $\mathbb{C}^{2}-\mathscr{A}_{b}$ the two groups $\pi_{1}\left(G F_{n}^{2}, b_{n}\right)$ and $\pi_{1}\left(N_{\varepsilon}, b_{n}\right)$ are isomorphic.

We begin by finding generators. Orient all lines $L_{i j}(\mathbb{R})$, in the direction from b_{i} to b_{j} where $i<j$. Let $p_{i j}=L_{i j}(\mathbb{R}) \cap L_{n}^{\infty}(\mathbb{R})$. We define loop $a_{i j n}, 1 \leq i<j \leq n-1$, to be the loop in L_{n}^{∞}, based at b_{n}, which goes around $p_{i j}$ (see Fig. 10). As a consequence of Proposition 5.3 we immediately obtain the following result.

Fig. 10. The loops $a_{i j n}, \tilde{a}_{i j n}$ and $a_{i j n}^{\prime}$.

Lemma 6.6. The set $\left\{a_{i j n} \mid 1 \leq i<j \leq n-1\right\}$, generates the group $\pi_{1}\left(G F_{n}^{2}, b_{n}\right)$.
We now wish to find the defining relations amongst the $a_{i j n}$ for the group $\pi_{1}\left(G F_{n}^{2}, b_{n}\right)$. We will do this using Van Kampen's Theorem. We begin by dividing $\mathbb{R}^{2} \subset \mathbb{C}^{2}$ into three open sets. Let $\varepsilon>0$ be a small real number. Let $T(\mathbb{R})$ be a real tubular neighborhood of the curve $\psi(\mathbb{R})$, with diameter equal to 2ε. Choose ε small enough so that $T(\mathbb{R})$ does not contain any double intersections of \mathscr{A}_{b}. Let $D_{\varepsilon}(\mathbb{R}) \subset T(\mathbb{R})$ be the disc of radius ε centered at b_{n}. The curve $\psi(\mathbb{R})$ divides \mathbb{R}^{2} into two regions. Call the open region containing the tangent lines to $\psi(\mathbb{R})$ the exterior region of $\psi(\mathbb{R})$. The complementary open region will be called the interior region of $\psi(\mathbb{R})$. Let $E(\mathbb{R})$ denote the union of the exterior region of $\psi(\mathbb{R})$ and the disc $D_{\varepsilon}(\mathbb{R})$. Let $I(\mathbb{R})$ denote the union of the interior region of $\psi(\mathbb{R})$ and the disc $D_{\varepsilon}(\mathbb{R})$. Note that $\mathbb{R}^{2}=T(\mathbb{R}) \cup E(\mathbb{R}) \cup I(\mathbb{R})$. Let E, I and T denote the complexification of each of these sets, respectively, intersected with N_{ε}.

Our aim is to find a presentation for $\pi_{1}\left(G F_{n}^{2}, b_{n}\right)$ by applying Van Kampen's Theorem to the sets $I-\mathscr{A}_{b}, E-\mathscr{A}_{b}$, and $T-\mathscr{A}_{b}$. To do this, we begin by finding a presentation of $\pi_{1}\left(I-\mathscr{A}_{b}, b_{n}\right)$. We first need to define a new loop $\tilde{a}_{i j n}, 1 \leq i<i \leq n-1$, in $G F_{n}^{2}$. Define the loop $\tilde{a}_{i j n}$ as follows. Pick a point $p_{i j} \in I(\mathbb{R})$ on the line $L_{i j}(\mathbb{R})$ which lies within the disc of radius ε about the point b_{j}. Let the line $\tilde{L}(\mathbb{R})$ denote the real line joining b_{n} and $p_{i j}$. We define the loop $\tilde{a}_{i j n}$ to be the loop in \tilde{L}, based at b_{n}, which goes around $p_{i j}$ (see Fig. 10).

Lemma 6.7. The group $\pi_{1}\left(I-\mathscr{A}_{b}, b_{n}\right)$ admits a presentation with generators

$$
\tilde{a}_{i j n}, \quad 1 \leq i<j \leq n-1,
$$

and defining relations

$$
\begin{equation*}
\left[\tilde{a}_{i j n}, \tilde{a}_{r s n}\right]=1, \quad 1 \leq i<r<j<s \leq n-1 . \tag{6}
\end{equation*}
$$

Proof. Note that the set $I(\mathbb{R})$ is convex. Hence, the lines $L_{i j}(\mathbb{R})$ intersect $I(\mathbb{R})$ in only one segment. To complete the proof apply Lemma 5.6 to the set I.

We now find a presentation for the group $\pi_{1}\left(E-\mathscr{A}_{b}, b_{n}\right)$. We begin by defining a new loop $a_{i j n}^{\prime}, 1 \leq i<j \leq n-1$, contained in $G F_{n}^{2}$. Let $\psi^{\prime}(\mathbb{R})$ be a curve joining b_{n} and b_{i-1} which is obtained by deforming the curve $\psi(\mathbb{R})$ as follows. Fix the points b_{n} and b_{i-1} and push the portion of the curve $\psi(\mathbb{R})$ lying between these two points away from the curve $\psi(\mathbb{R})$ into the region $E(\mathbb{R})$. Let $p_{r s}$ be equal to $L_{r s}(\mathbb{R}) \cap \psi^{\prime}(\mathbb{R}), 1 \leq$ $r<s \leq n-1$. We now define the loop $a_{i j n}^{\prime}$. Start at the point b_{n}. On reaching a point $p_{r s}$ hop over the line $L_{r s}(\mathbb{R})$. Run all the way down $\psi^{\prime}(\mathbb{R})$, hopping over each point $p_{r s}$, until reaching the line $L_{i j}(\mathbb{R})$. Then choose a line $L(\mathbb{R})$ passing through $p_{i j}$ which is tranverse to $L_{i j}(\mathbb{R})$. Let l be a small loop in L, which is oriented in the positive direction with respect to the orientation of L, and which goes around $L_{i j}$. Run around the loop l in the positive direction. Finally, return to b_{n} along the same path taken on the outward journey.

Lemma 6.8. The group $\pi_{1}\left(E-\mathscr{A}_{b}, b_{n}\right)$ admits a presentation with generators

$$
a_{i j n} \text { and } a_{i j n}^{\prime} \quad 1 \leq i<j \leq n-1
$$

and defining relations

$$
\begin{array}{ll}
{\left[a_{i j n}, a_{r s n}\right]=1,} & 1 \leq r<i<j<s \leq n-1, \\
{\left[a_{i j n}, a_{r s n}^{\prime}\right]=1,} & 1 \leq i<j<r<s \leq n-1 . \tag{8}
\end{array}
$$

Proof. Note that the set $E(\mathbb{R})$ is not convex, and that, in fact, the intersection of each line $L_{i j}(\mathbb{H})$ with $E(\mathbb{H})$ consists of precisely two line segments. Now, apply Lemma 5.6, to the set E, noting that for each line $L_{i j}(\mathbb{R})$ we have to add the two generators $a_{i j n}$ and $a_{i j n}^{\prime}$ to the presentation of $\left.\pi_{1}\left(E-\mathscr{A}_{b}, b_{n}\right)\right)$, corresponding to the two line segments.

Now, we find a presentation for the group $\pi_{1}\left(T-\mathscr{A}_{b}, b_{n}\right)$. Let $\left[g_{1}, \ldots, g_{n}\right]$ denote the set of relations

$$
g_{1} \ldots g_{n}=g_{2} \ldots g_{n} g_{1}=\cdots=g_{n} g_{1} \ldots=g_{n-1}
$$

Lemma 6.9. The group $\pi_{1}\left(T-\mathscr{A}_{b}, b_{n}\right)$ admits a presentation with generators

$$
a_{i j k}, \quad \tilde{a}_{i j n}, \quad 1 \leq i<j \leq n-1,
$$

and defining relations

$$
\begin{equation*}
\left[a_{1 j n}, \ldots, a_{j-1, j n}, \tilde{a}_{j, j+1, n}, \ldots, \tilde{a}_{j, n-1, n}\right]=1, \quad 1 \leq j \leq n-1 . \tag{9}
\end{equation*}
$$

Proof. The generators $a_{i j n}$ and $\tilde{a}_{i j n}$ can be homotoped into the set $T-\mathscr{A}_{b}$. To see this deform the paths that were used to define the loops $a_{i j n}$ and $\tilde{a}_{i j n}$ into the set $T-\mathscr{A}_{b}$. This can be done by deforming these paths over the double points in $\mathscr{A}_{b}(\mathbb{R})$, using Lemma 5.5. Then deform the small loops in the definition of the $a_{i j n}$ and $a_{i j n}^{\prime}$, past the intersection points in lines $L_{i j}(\mathbb{R})$, until they lie in the set $T-\mathscr{A}_{b}$.

By making ε small enough we see that

$$
\pi_{1}\left(T-\mathscr{A}_{b}, h_{n}\right) \cong \coprod_{j} \pi_{1}\left(B_{c}\left(h_{j}\right)-\bigcup_{i} I_{i j}\right),
$$

where $B_{\varepsilon}\left(b_{i}\right)$ is a complex ball or radius ε with center b_{j}. We now refer to Randell's paper [16]. By considering the ends of the loops $a_{i j k}$ and $\tilde{a}_{i j k}$ locally in each ball $B_{\varepsilon}\left(b_{j}\right)$ we see that the relations (9) arise from a calculation made within the complement of the Hopf link, $\delta\left(B_{\varepsilon}\left(b_{j}\right)\right) \cap \bigcup L_{i j}$.

We now want to write the loops $\tilde{a}_{i j n}$ and $a_{i j n}^{\prime}$ in terms of the generators $a_{i j k}$. We refer to Randell's paper [16]. Using the result contained in this paper concerning the Hopf link of a point, we have the formulas

$$
\begin{equation*}
\tilde{a}_{i j n}=A^{-1} a_{i j n} A \tag{10}
\end{equation*}
$$

where,

$$
\begin{equation*}
A=a_{i-1, j n} \ldots a_{1 j n} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i j n}^{\prime}=B^{-1} \tilde{a}_{i j n} B \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\tilde{a}_{i, j-1, n} \ldots \tilde{a}_{i, i+1, n} a_{i, i-1, n} \ldots a_{1, i, n} . \tag{13}
\end{equation*}
$$

We are now able to state the main theorem of this section.
Theorem 6.10. The group $\pi_{1}\left(G F_{n}^{2}, b_{n}\right)$ admits a presentation with generators

$$
a_{i j n}, \quad 1 \leq i<j \leq n-1
$$

and defining relations (6)-(9).
Proof. As we have seen, $N_{\varepsilon} \simeq \mathbb{C}^{2}-\mathscr{A}_{b}$ can be divided into three sets, $E-\mathscr{A}_{b}, I-\mathscr{A}_{b}$ and $T-\mathscr{A}_{b}$. We know a presentation for the fundamental group of each of these sets. Hence, we need only understand how they fit together. The fundamental group of the
intersection $E \cap T$ is a free group with generators $a_{i j n}$ and $a_{i j n}^{\prime}$. The fundamental group of the intersection $I \cap T$ is a free group with gencrators $\tilde{a}_{i j n}$. Also, $E \cap I=D_{\varepsilon}$ which is contractible. Now apply Van Kampen's Theorem.

In Section 9 we will need to know a presentation for the group $\pi_{1}\left(\mathbb{P}^{2}-\mathscr{A}_{b}, b_{n}\right)$, which arises as the fundamental group of the generic fiber of the projection $q_{n}^{2}: Y_{n}^{2} \rightarrow Y_{n-1}^{2}$.

Lemma 6.11. The group $\pi_{1}\left(\mathbb{P}^{2}-\mathscr{A}_{b}, b_{n}\right)$ admits a presentation with the same generators and relations as $\pi\left(G F_{n}^{2}, b_{n}\right)$, and with the additional relation

$$
\begin{equation*}
a_{12 n} a_{13 n} \ldots a_{1, n-1, n} a_{23 n} \ldots a_{2, n-1, n} a_{34 n} \ldots a_{n-2, n-1, n}=1 \tag{14}
\end{equation*}
$$

Proof. Use Van Kampen's theorem to "glue" the line at infinity into $G F_{n}^{2}$. Note that this line is homeomorphic to a punctured copy of \mathbb{P}^{1} : hence the relation (14).

7. Main theorems

We begin this section by finding generators for the group P_{n}^{2}. Let F_{k} be equal to the fiber ${ }^{3}$ over the base point $b \in S_{n-1}$, of the projection $X_{n}^{2} \rightarrow X_{n-1}^{2}$, obtained by forgetting the k th point, for $1 \leq k \leq n$. Let $L(\mathbb{R})$ be the tangent line to $\psi(\mathbb{R})$ passing through the point b_{k}. Define loop $a_{i j k}, 1 \leq i<j<k \leq n$, to be the loop in L, based at b_{k}, which goes around $L(\mathbb{R}) \cap L_{i j}(\mathbb{R})$ (see Fig. 11). Define loops $a_{i j k}^{\prime}$ and $a_{i j k}^{\tilde{i}}$ in P_{n}^{2} using formulas (10)-(13) with $n=k$.

Lemma 7.1. The group $P_{n}^{2}, n \geq 3$, is generated by the set

$$
\left\{a_{i j k} \mid 1 \leq i<j<k \leq n\right\}
$$

Proof. We proceed by induction. The group P_{3}^{2} isomorphic to \mathbb{Z} by Proposition 3.4, thus when $n=3$ the result is clear. Assume the result up to $n-1$. Now use sequence (5). The generators $a_{i j k}$, where $1 \leq i<j<k \leq n-1$, generate P_{n-1}^{2} by induction, and clearly lift from P_{n-1}^{2} to P_{n}^{2}. By adding the the generators $a_{i j n}$ we obtain the result.

We now want to find relations amongst the $a_{i j k}$ in order to find a presentation for the group P_{n}^{2}. We denote the lexcigongraphical ordering on the set of two element subsets of $\{1, \ldots, n\}$ by \prec.

Theorem 7.2. The following relations hold in P_{n}^{2} for $3 \leq k \leq n$:

$$
\begin{array}{ll}
{\left[a_{i j k}, a_{r s k}\right]=1,} & 1 \leq r<i<j<s \leq k, \\
{\left[a_{i j k}, a_{r s k}^{\prime}\right]=1,} & 1 \leq i<j<r<s \leq k, \tag{16}
\end{array}
$$

[^3]

Fig. 11. The generator $a_{i j k}$ of P_{n}^{2}.

$$
\begin{align*}
& {\left[\tilde{a}_{i j k}, \tilde{a}_{r s k}\right]=1, \quad 1 \leq i<r<j<s \leq k,} \tag{17}\\
& {\left[a_{1 j k}, \ldots, a_{i-1, j k}, \tilde{a}_{i, i+1, k}, \ldots, \tilde{a}_{i, k-1, k}, a_{i k, k+1}, \ldots, a_{j k, n-1}\right]=1, \quad 1 \leq j \leq k-1, \text { (18) }} \tag{18}\\
& a_{i j k}^{-1} a_{r s t} a_{i j k} \tag{19}\\
& \begin{cases}a_{r s t} & r s \prec i j \text { or } j k \prec s t, \\
a_{i j t} a_{i k t} a_{r s t} a_{i k t}^{-1} a_{i j t}^{-1} & j k=r s, \\
a_{i j t} a_{i k t} a_{j k t} a_{i k t}^{-1} a_{a j t}^{-1} a_{j k t}^{-1} a_{r s t} a_{j k t} a_{i j t} a_{i k t} a_{j k t}^{-1} a_{i k t}^{-1} a_{i j t}^{-1} & i k \prec r s \prec j k, \\
a_{i j t} a_{i k t} a_{j k t} a_{r s t} a_{j k t}^{-1} a_{i k t}^{-1} a_{i j t}^{-1} & i k=r s \text { or } i j=r s, \\
a_{i j t} a_{i k t} a_{j k t} a_{i j t}^{-1} a_{j k t}^{-1} a_{i k t}^{-1} a_{r s t} a_{i k t} a_{j k t} a_{i j t} a_{j k t}^{-1} a_{i k t}^{-1} a_{i j t}^{-1} & i j \prec r s \prec i k, \text { wherek<t } \leq n .\end{cases}
\end{align*}
$$

Proof. This proof proceeds inductively using sequence (5). When $n=3$ the relations degenerate, which is correct since P_{3}^{2} is isomorphic to \mathbb{Z}.

At the nth stage we split the proof up into three main parts and deal with each separately in the following sections:

1. When $k=n$ relations (15)-(18) are simply those coming from the fiber group. These were established in Section 6.
2. When $t=n$ relations (19) come from conjugation of generators in the fiber group by the generators of P_{n}^{2}. These will be established in Section 10.
3. Relations not dealt with in (1) or (2) conre from lifting relations from P_{n-1}^{2}. These will be established in Section 12.

If sequence (5) were short exact, then Theorem 7.2 would give us precisely the relations required for a presentation of P_{n}^{2}. This motivates the following definition.

Definition 7.3. Let $P L_{n}$ be the group whose presentation has generators $a_{i j k}, 1 \leq i<j<$ $k \leq n$, and relations (15)-(19) of Theorem 7.2.

Let $\varphi_{n}: P L_{n} \rightarrow P_{n}^{2}$ be the tautological homomorphism which takes generators to generators. Then, φ_{n} is clearly well defined and onto.

We now want to see how close the group $P L_{n}$ is to being isomorphic to P_{n}^{2}. We will do this by studying the relationship between the integral homology of each of these groups. Specifically, we will show that φ_{n} induces an isomorphism on the first two integral homology groups. First, we will need some preliminary results concerning the homology of the space X_{n}^{2}.

Lemma 7.4. The restriction map

$$
H^{k}\left(X_{n}^{2}, \mathbb{Z}\right) \rightarrow H^{k}\left(G F_{n}^{2}, \mathbb{Z}\right)
$$

is surjective.
Proof. The group $H^{1}\left(X_{n}^{2}, \mathbb{Z}\right)$ contains the classes of the forms $(1 / 2 \pi i)\left(\mathrm{d} \Delta_{i j k} / \Delta_{i j k}\right)$, where $\Delta_{i j k}$ are the minors defined in the introduction. The forms $(1 / 2 \pi i)\left(\mathrm{d} \Delta_{i j n} / \Delta_{i j n}\right)$ restrict to the forms $(1 / 2 \pi i)\left(\mathrm{d} L_{i j n} / L_{i j n}\right)$ on $G F_{n}^{2}$ whose k-fold wedge products generate $H^{k}\left(G F_{n}^{2}, \mathbb{Z}\right)$ [3].

Corollary 7.5. The group $H_{k}\left(G F_{n}^{2}, \mathbb{Z}\right)$ injects into $H_{k}\left(X_{n}^{2}, \mathbb{Z}\right)$ for all $k \geq 0$.
Proposition 7.6. The Leray spectral sequence in the homology for the map $p_{n}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}$ has the following properties (here all homology groups have \mathbb{Z} coefficients, unless otherwise stated):

1. for $p+q \leq 2$ the $E_{p, q}^{2}$ terms are isomorphic to

$H_{2}\left(G F_{n}^{2}\right)$	$*$	$*$
$H_{1}\left(G F_{n}^{2}\right)$	$H_{1}\left(G F_{n}^{2}\right) \otimes H_{1}\left(X_{n-1}^{2}\right)$	$*$
\mathbb{Z}	$H_{1}\left(X_{n-1}^{2}\right)$	$H_{2}\left(X_{n-1}^{2}\right)$

2. let $p+q \leq 2$. Then the d_{2} differentials whose images lie in $E_{p, q}^{2}$ all vanish, and thus $E_{p, q}^{2}=E_{p, q}^{\infty}$;
3. the terms $E_{p, q}^{2}$ are torsion free for $p+q \leq 2$.

Proof. We begin by proving statement (1). We will work with the cohomology spectral sequence first, and justify the statement in homology later. Let π denote the projection map $p_{n}^{2}: X_{n}^{2} \rightarrow X_{n-1}^{2}$. Let \mathscr{U} be an open cover of X_{n-1}^{2}. Let \mathscr{F}_{q} be the sheaf defined by $\mathscr{F}_{q}(U)=H^{q}\left(\pi^{-1}(U), \mathbb{Z}\right)$, where $U \in \mathscr{U}$. Then the E_{2} term of the Leray spectral
sequence in cohomology is given by

$$
E_{2}^{p, q}=H^{p}\left(X_{n}^{2}, \mathscr{F}_{q}\right)
$$

and converges to $H^{p+q}\left(X_{n}^{2}, \mathbb{Z}\right)$. If the map π were a fibration then \mathscr{F}_{q} would be locally constant for each q and we would obtain the result, since the cohomology groups of the fiber of π are torsion free abelian groups of finite rank [3]. However, this is not the case. To obtain the result we show that \mathscr{F}_{q} is locally constant for $q=1,2$.

Since the projection p_{n}^{2} is a fibration over the complement of the discriminant locus with fiber a hyperplane complement, it follows that away from the discriminant locus, each of the sheaves \mathscr{F}_{q} is a local system of torsion free abelian groups. Moreover, since the hyperplanes are labelled, the local system of H^{1} 's is trivial over the complement of the discriminant locus. Since the cohomology ring of a hyperplane complement is generated by H^{1}, it follows that each \mathscr{F}_{q} is a trivial local system of torsion free abelian groups over the complement of the discriminant locus. Hence, since the fundamental group of X_{n-1}^{2} less the discriminant locus surjects onto the fundamental group of X_{n-1}^{2}, it follows that \mathscr{F}_{1} and \mathscr{F}_{2} are trivial as local systems, once we prove that they are local systems.

Let x be any point in X_{n-1}^{2}. We will show that we can choose an open ball $B_{x} \subset X_{n-1}^{2}$, containing x, so that the group $H^{q}\left(\pi^{1}\left(B_{x}\right), \mathbb{Z}\right)$ is isomorphic to $H^{q}\left(G F_{n}^{2}, \mathbb{Z}\right)$ for $q=1,2$.

Denote the complex dimension of the space X_{n-1}^{2} by m. The fiber over the point x in X_{n-1}^{2} is equal to \mathbb{C}^{2} less a union of lines $L_{i j}, 1 \leq i<j \leq n-1$. Let $D_{i j n} \subset\left(\mathbb{C}^{2}\right)^{n}$ denote the divisor defined by the minor $\Delta_{i j n}$ defined in Section 1. Then we choose an open ball B_{x} containing x so that $D_{i j n} \cap \pi^{1}\left(B_{x}\right)$ is homeomorphic to $L_{i j} \times B_{x}$. Denote the set $L_{i j} \times B_{x}$ by $F_{i j}$. Then $\pi^{-1}\left(B_{x}\right)$ is homeomorphic to a complex ball M of dimension $m+2$ minus the union of the $F_{i j}$. Since the intersection lattices of $M-\bigcup F_{i j}$ and $G F_{n}^{2}$ agree in complex codimensions 1 and 2 , the groups $H^{q}\left(\pi^{-1}\left(B_{x}\right), \mathbb{Z}\right)$ and $H^{q}\left(G F_{n}^{2}, \mathbb{Z}\right)$ are isomorphic for $q=1,2$ (for a detailed proof of this fact see Example 1, and Corollaries 3 and 4 of [10]).

We prove (2) and (3) together, using induction. To begin the induction, note that $H_{0}\left(X_{3}^{2}\right)=\mathbb{Z}, H_{1}\left(X_{3}^{2}\right)=\mathbb{Z}$, and $H_{2}\left(X_{3}^{2}\right)=0$. Since $G F_{n}^{2}$ is a complement of lines in \mathbb{C}^{2}, we know that $H_{k}\left(G F_{n}^{2}\right)$ (and $H^{k}\left(G F_{n}^{2}\right)$) is torsion free for all $k \geq 0$ [3]. We work first with the Leray spectral sequence in cohomology with rational coefficients. Assume inductively that $H^{k}\left(X_{n-1}^{2}\right)$ is torsion free for $k=0,1$ and 2 . From Lemma 7.4 we deduce that all of the differentials $d_{2}: E_{2}^{0, q} \rightarrow E_{2}^{2, q-1}$ vanish. By multiplicativity of the spectral sequence in cohomology, this implies that the differential $d_{2}: E_{2}^{1,1} \rightarrow E_{2}^{3,0}$ also vanishes.

Now, dualize to consider the homology spectral sequence. Note that all of the required differentials vanish when the terms of the spectral sequence have \mathbb{Q} coefficients. However, since the fiber homology is torsion free all of the differentials whose image lie in the fiber homology groups vanish when the terms have \mathbb{Z} coefficients. The only other differential which could be non-zero is $d^{2}: E_{3,0}^{2} \rightarrow E_{1,1}^{2}$. However, this has to vanish since $H_{1}\left(G F_{n}^{2}\right) \otimes H_{1}\left(X_{n-1}^{2}\right)$ is torsion free by induction.

Corollary 7.7. The first and second integral homology groups of X_{n}^{2} are torsion free.
Proof. Since the Leray spectral sequence in homology degenerates at $E_{p, q}^{2}$, when $p+$ $q \leq 2$, the graded quotients of the corresponding filtration of $H_{1}\left(X_{n}^{2}, \mathbb{Z}\right)$ and $H_{2}\left(X_{n}^{2}, \mathbb{Z}\right)$ are torsion free, from which the result follows.

Remark 7.8. The E_{∞} term of the Leray spectral sequence in cohomology induces a decreasing filtration L^{\bullet} on $H^{\bullet}\left(X_{n}^{2}, \mathbb{Z}\right)$ which we shall call the Leray filtration.

We will also need a technical corollary.
Corollary 7.9. The cup product $\Lambda^{2} H^{1}\left(X_{n}^{2}, \mathbb{Z}\right) \rightarrow H^{2}\left(X_{n}^{2}, \mathbb{Z}\right)$ is surjective.
Proof. As a graded ring, $E_{\infty}^{p, q}$ is isomorphic to $\operatorname{Gr}_{L}^{p} H^{p+q}\left(X_{n}^{2}\right)$, where $G r_{L}^{p}$ denotes the p th graded quotient of the filtration L^{\bullet}. From the proof of Proposition 7.6 we deduce that $\Lambda^{2} G r_{L}^{\bullet} H^{1}\left(X_{n}^{2}, \mathbb{Z}\right)$ surjects onto $G r_{L}^{\bullet} H^{2}\left(X_{n}^{2}, \mathbb{Z}\right)$, which implies the result by induction on n.

Another immediate consequence of Proposition 7.6 is the following result.
Corollary 7.10. The sequence

$$
0 \rightarrow H_{1}\left(G F_{n}^{2}, \mathbb{Z}\right) \rightarrow H_{1}\left(X_{n}^{2}, \mathbb{Z}\right) \rightarrow H_{1}\left(X_{n-1}^{2}, \mathbb{Z}\right) \rightarrow 0
$$

is short exact.
Proof. This sequence arises from the filtration of $H_{1}\left(X_{n}^{2}, \mathbb{Z}\right)$ given by the E^{∞} term of the Leray spectral sequence, plus the fact that $H_{1}\left(G F_{n}^{2}, \mathbb{Z}\right)$ injects into $H_{1}\left(X_{n}^{2}, \mathbb{Z}\right)$ by Corollary 7.5.

This corollary immediately gives us the following lemma.
Lemma 7.11. The group $H_{1}\left(X_{n}^{2}, \mathbb{Z}\right)$ is free abelian group of rank $\binom{n}{3}$.
Proof. Proceed by induction. To begin the induction note that the group $H_{1}\left(X_{3}^{2}, \mathbb{Z}\right)$ is isomorphic to \mathbb{Z}, since $\pi_{1}\left(X_{3}^{2}\right)$ equal to \mathbb{Z} (Lemma 3.3).
Since $G F_{n}^{2}$ is the complement in \mathbb{A}^{2} of $\binom{n-1}{2}$ lines, the group $H_{1}\left(G F_{n}^{2}, \mathbb{Z}\right)$ is free abelian of rank $\binom{n-1}{2}$. By induction the group $H_{1}\left(X_{n-1}^{2}, \mathbb{Z}\right)$ is free abelian of rank $\binom{n-1}{3}$. The result follows from Corollary 7.10 and the fact that

$$
\binom{n-1}{3}+\binom{n-1}{2}=\binom{n}{3}
$$

Since we do not know if X_{n}^{2} is an Eilenberg-MacLane space, it is nccessary to prove that the first and second integral homology groups of X_{n}^{2} are equal to those of
P_{n}^{2}. To do this we will use some homotopy theory. Denote the Eilenberg-MacLane space $K(G, 1)$ associated to G by $B G$.

Lemma 7.12. If $(X, *)$ is a connected, pointed topological space with the homotopy type of a CW complex and fundamental group G, then the following statements hold:

1. there is a natural map $(X, *) \rightarrow(B G, *)$ which is unique up to homotopy;
2. the homotopy fiber U of the map in 1 . is weakly homotopy equivalent to the universal cover of X.

Proof. This is a standard result in homotopy theory. For the proof of (1) see [23, Corollary 2.4, p. 218]. The proof of (2) follows from the definition and universal mapping properties of the universal cover.

Proposition 7.13. When $k=1,2$ the natural map

$$
H_{k}\left(X_{n}^{2}, \mathbb{Z}\right) \rightarrow H_{k}\left(P_{n}^{2}, \mathbb{Z}\right)
$$

is an isomorphism.
Proof. In this proof all homology groups have integer coefficients, and we denote $\pi_{1}\left(X_{n}^{2}\right)$ by G. Using Hurewicz's Theorem, we see that the result is true for $k=1$.

By Lemma 7.9, $H_{2}\left(X_{n}^{2}\right)$ is generated by cup products. Thus, since

commutes, it follows that $H^{2}(G) \rightarrow H^{2}\left(X_{n}^{2}\right)$ is surjective.
By Lemma 7.12 we know that there is a natural map

$$
\left(X_{n}^{2}, *\right) \rightarrow(B G, *)
$$

whose homotopy fiber, U_{n}^{2}, is weakly homotopy equivalent the universal cover of X_{n}^{2}. Since U_{n}^{2} is simply connected, the E_{2} term Leray-Serre spectral sequence in cohomology of this fibration is

$H_{2}\left(U_{n}^{2}\right)$	$H_{2}\left(G, H_{1}\left(U_{n}^{2}\right)\right)$	$H_{2}\left(G, H_{2}\left(U_{n}^{2}\right)\right)$
0	0	0
\mathbb{Z}	$H_{1}(G)$	$H_{2}(G)$

Thus, it follows that $H^{2}(G) \rightarrow H^{2}\left(X_{n}^{2}\right)$ is injective. Hence, $H^{2}(G)$ is isomorphic to $H^{2}\left(X_{n}^{2}\right)$, and therefore, by the universal coefficient theorem, $H_{2}\left(X_{n}^{2}, \mathbb{Q}\right)$ is isomor-
phic to $H_{2}(G, \mathbb{Q})$. Since $H_{2}\left(X_{n}^{2}\right)$ is torsion free by Corollary 7.7, this implies that $H_{2}\left(X_{n}^{2}\right) \rightarrow H_{2}(G)$ is injectivc.

Finally, using the Leray spectral sequence in homology of the map $\left(X_{n}^{2}, *\right) \rightarrow(B G, *)$, we also see that $H_{2}\left(X_{n}^{2}\right) \rightarrow H_{2}(G)$ is surjective (as $d_{2}: E_{2,0}^{2} \rightarrow E_{0,1}^{2}$ vanishes, since the first row is zero), which completes the proof.

We can now prove the main theorems.
Theorem 7.14. The homomorphism φ_{n} induces an isomorphism between the first integral homology groups of $P L_{n}$ and P_{n}^{2}.

Proof. First, consider the group $H_{1}\left(P L_{n}, \mathbb{Z}\right)$. Since all of the relations in $P L_{n}$ are commutators, $H_{1}\left(P L_{n}, \mathbb{Z}\right)$ is a free group of rank $\binom{n}{3}$ generated by the homology classes of the elements $a_{i j k}, i \leq i<j<k \leq n$, which we also denote by $a_{i j k}$. The map $P L_{n} \rightarrow P L_{n-1}$ induces a map from $H_{1}\left(P L_{n}, \mathbb{Z}\right) \rightarrow H_{1}\left(P L_{n-1}, \mathbb{Z}\right)$. By considering the abelianisation of the relevant groups we obtain the short exact sequence of torsion-free abelian groups

$$
0 \rightarrow K \rightarrow H_{1}\left(P L_{n}, \mathbb{Z}\right) \rightarrow H_{1}\left(P L_{n-1}, \mathbb{Z}\right) \rightarrow 0
$$

where K is defined to be the kernel. The group K is generated by the homology classes of the elements $a_{i j n}, 1 \leq i<j \leq n-1$.

The map φ_{n} induces the following commutative diagram:

The map i is clearly well defined and the bottom row of the diagram is exact by Lemma 7.10. The map i is surjective since $H_{1}\left(G F_{n}^{2}, \mathbb{Z}\right)$ is freely generated by the homology classes of the loops defined in the presentation of $\pi_{1}\left(G F_{n}^{2}, b\right)$, which we denote by $\gamma_{i j n}, 1 \leq i<j \leq n-1$. By definition, the map φ_{*} maps the class $a_{i j n}$ to the class $\gamma_{i j n}$ for all $1 \leq i<j \leq n-1$. Since the groups K and $H_{1}\left(G F_{n}^{2}, \mathbb{Z}\right)$ are both torsion-free abelian groups the map i is an isomorphism.

We now proceed by induction. Note that $H_{1}\left(P L_{3}, \mathbb{Z}\right)$ and $H_{1}\left(P_{3}^{2}, \mathbb{Z}\right)$ are both isomorphic to \mathbb{Z}. Assume by induction that the map $\varphi_{n-1_{*}}$ is an isomorphism. The map i is an isomorphism and so we complete the proof by applying the Five Lemma to the above commutative diagram.

To prove that $H_{2}\left(P_{n}^{2}, \mathbb{Z}\right)$ is isomorphic to $H_{2}\left(P L_{n}, \mathbb{Z}\right)$ we will use some rational homotopy theory. Let $D: H_{2}(X, \mathbb{Q}) \rightarrow \Lambda^{2} H_{1}(X, \mathbb{Q})$ be the map induced by the diagonal
inclusion $X \hookrightarrow X \times X$. Given a group G, let $\Gamma^{n} G$ denote the nth term in the lower central series of G.

Lemma 7.15. If G is any group then the commutator map

$$
\Lambda^{2} H_{1}(G, \mathbb{Z}) \xrightarrow{[,]} \Gamma^{2} G / \Gamma^{3} G
$$

defined by

$$
x \wedge y \mapsto \overline{x y x^{-1} y^{-1}}
$$

is a surjection.
Proof. The group $\Gamma^{2} G / \Gamma^{3} G$ is abelian, and admits a surjection from the group H_{1} $(G, \mathbb{Z}) \times H_{1}(G, \mathbb{Z})$. The proof now follows by inspection.

The following result is originally due to Sullivan [20], and can be proved using results in either [4, Section 2.1] or [21, Section 8]. The proof is omitted as it is technical (although relatively straightforward) and would be too large a diversion for this paper.

Lemma 7.16. If X is a topological space and the dimension of $H_{1}(X, \mathbb{Q})$ is finite for $k=1,2$, then the sequence

$$
H_{2}(X, \mathbb{Q}) \xrightarrow{D} \Lambda^{2} H_{1}(X, \mathbb{Q}) \xrightarrow{[, 1}\left[\Gamma^{2} \pi_{1}(X) / \Gamma^{3} \pi_{1}(X)\right] \otimes \mathbb{Q} \rightarrow 0
$$

is exact and natural in X.
Corollary 7.17. The sequence

$$
0 \rightarrow H_{2}\left(X_{n}^{2}, \mathbb{Q}\right) \rightarrow \Lambda^{2} H_{1}\left(X_{n}^{2}, \mathbb{Q}\right) \rightarrow\left[\Gamma^{2} \pi_{1}\left(X_{n}^{2}\right) / \Gamma^{3} \pi_{1}\left(X_{n}^{2}\right)\right] \otimes \mathbb{Q} \rightarrow 0
$$

is short exact.
Proof. Note that the map $H_{2}(X, \mathbb{Q}) \rightarrow \Lambda^{2} H_{1}(X, \mathbb{Q})$ in Lemma 7.16 is injective if and only if $\Lambda^{2} H^{1}(X, \mathbb{Q}) \rightarrow H^{2}(X, \mathbb{Q})$ is surjective. Now apply Lemma 7.9.

We need to compute the map $D: H_{2}\left(P L_{n}, \mathbb{Q}\right) \rightarrow \Lambda^{2} H_{1}\left(P L_{n}, \mathbb{Q}\right)$.
Lemma 7.18. If F is a free group then

$$
\Lambda^{2} H_{1}(F, \mathbb{Z}) \xrightarrow{[,]} \Gamma^{2} F / \Gamma^{3} F
$$

is an isomorphism of \mathbb{Z}-modules.
Proof. The associated graded group of the descending central series for the free group on a finite set X is isomorphic to the free Lie algebra on X [19, Theorem 6.1, p. 24]. The proof follows easily from this fact.

Let G be the group

$$
G=\left\langle x_{1}, \ldots, x_{n} \mid r\right\rangle,
$$

where $r \in \Gamma^{2}\left\langle x_{1}, \ldots, x_{n}\right\rangle$. The relation r gives an element of $H_{2}(G, \mathbb{Z})$. We will call $D(r)$ the linearization of r. As a consequence of Lemmas 7.18 and 7.16 we have the following result.

Lemma 7.19. If r is as above then the following statements hold:

1. The group $H_{2}(G, \mathbb{Z})$ is isomorphic to the free abelian group generated by r.
2. If $r \equiv \prod\left[x_{i}, x_{j}\right]^{m_{i j}} \bmod \Gamma^{3} G$, then the map D is given by the formula

$$
D(r)=\sum m_{i j}\left(x_{i} \wedge x_{j}\right)
$$

Theorem 7.20. The homomorphism φ_{n} induces an isomorphism between the second integral homology groups of $P L_{n}$ and P_{n}^{2}.

Proof. Let N be the number of relations in $P L_{n}$. The rank of $H_{2}\left(P L_{n}, \mathbb{Z}\right)$ is less than or equal to N. When equality occurs $H_{2}\left(P L_{n}, \mathbb{Z}\right)$ is torsion free. So if we can show that the rank of $H_{2}\left(P L_{n}, \mathbb{Z}\right)$ is equal to the dimension of $H_{2}\left(P L_{n}, \mathbb{Q}\right)$, then $H_{2}\left(P L_{n}, \mathbb{Z}\right)$ is torsion free. Thus, we first use rational coefficients.

We begin by defining filtrations on $H_{1}\left(P L_{n}\right), \Lambda^{2} H_{1}\left(P L_{n}\right)$ and $H_{2}\left(P L_{n}\right)$. Let G_{0} be equal to the set of $a_{i j n}$ where $1 \leq i<j \leq n-1$, and G_{1} be equal to $H_{1}\left(P L_{n}\right)$. Then the subspaces span $\left\{G_{i}\right\}$ filter $H_{1}\left(P L_{n}\right)$. This filtration induces the following filtration on $\Lambda^{2} H_{1}$. Let $F_{0}=\operatorname{span}\left\{a_{i j n} \wedge a_{r s n}\right\}$. Let $F_{1}=\operatorname{span}\left\{a_{i j k} \wedge a_{r s n}\right\} \cup F_{0}$ where $k \neq n$. Finally, let $F_{2}=\Lambda^{2} H_{1}\left(P L_{n}\right)$.

To define a filtration on $H_{2}\left(P L_{n}\right)$ we begin by filtering the relations of $P L_{n}$. Let R_{0} be the sel of relations (15)-(18) with $k=n$. These relations arise from the fiber group. Let R_{1} be the set of relations (19) with $t=n$ together with the set relations R_{0}. The set of relations $R_{1}-R_{0}$ come from conjugating generators in the fiber group by generators in P_{n-1}^{2}. Finally, let R_{2} be the set of all relations for $P L_{n}$. We now define a filtration \tilde{L} on $H_{2}\left(P L_{n}\right)$. Let \tilde{L}_{i} be the span of the elements of $H_{2}\left(P L_{n}\right)$ coming from the elements of R_{i}.

We now proceed with the proof using induction. First, note that both $H_{2}\left(P L_{3}, \mathbb{Z}\right)$ and $H_{2}\left(P_{n}^{2}, \mathbb{Z}\right)$ are trivial. Assume the result up to $n-1$. As a consequence of Lemma 7.16 we have the following commutative diagram:

First, we show that the map $D: H_{2}\left(P L_{n}\right) \rightarrow \Lambda^{2} H_{1}\left(P L_{n}\right)$ is injective. The map D is filtration preserving. Thus, the map $\gamma_{i}: \tilde{L}_{i} / \tilde{L}_{i-1} \rightarrow F_{i} / F_{i-1}$ induced by D is well defined. To show that D is injective it is sufficient to show that γ_{i} is injective for $0 \leq i \leq 2$. We begin with γ_{0}. The image under D of the fiber relations are

$$
\begin{align*}
& a_{i j n} \wedge a_{r s n} \quad \text { if } i j \neq r s, \tag{20}\\
& a_{i j n} \wedge\left(a_{1 i n}+a_{2 i n}+\cdots+a_{i j n}+\cdots+a_{i, n-1, n}\right) \quad \text { for } 1 \leq i \leq n-1 \tag{21}
\end{align*}
$$

All of these are linearly independent in F_{0}. Hence, \tilde{L}_{0} injects into F_{0}.
Now, consider the map γ_{1}. The linearized conjugation relations are

$$
\begin{align*}
& a_{i j k} \wedge a_{r s n} \quad \text { if } r s \neq i j, i k \text { or } j k, \tag{22}\\
& a_{r s n} \wedge\left(a_{i j k}+a_{i j n}+a_{i k n}+a_{i k n}\right) \quad \text { if } r s=i j, i k \text { or } j k . \tag{23}
\end{align*}
$$

We now quotient out by F_{0}. Relations (22) and (23) modulo F_{0} become

$$
\begin{equation*}
a_{r s n} \wedge a_{i j k}, \quad \text { where } k \neq n \tag{24}
\end{equation*}
$$

These are linearly independent. Hence γ_{1} is injective. The map γ_{2} is injective by induction. Hence the map D is injective.

We now show that the map φ_{n} induces an isomorphism between $H_{2}\left(P L_{n}\right)$ and $H_{2}\left(X_{n}^{2}\right)$. Let L be the filtration on $H_{\bullet}\left(X_{n}^{2}\right)$ induced by the Leray sequence. Since the map D is injective for both $H_{2}\left(P L_{n}\right)$ and $H_{2}\left(P_{n}^{2}\right)$ we will not differentiate between H_{2} and its image in $A^{2} H_{1}$, for example, $D\left(L_{0}\right)=L_{0}$. We show that the map $\beta_{i}: \tilde{L}_{i} / \tilde{L}_{i-1} \rightarrow L_{i} / L_{i-1}$ induced by φ_{n} is an isomorphism for $0 \leq i \leq 2$.

Begin with the map β_{0}. Note that $L_{0}=I_{2}\left(G F_{n}^{2}\right)$. Thus we have to analyze the group $H_{2}\left(G F_{n}^{2}\right)$. Recall that $G F_{n}^{2}=\mathbb{C}^{2}-\mathscr{A}_{b}$. Let p be an intersection point in \mathscr{A}_{b} and \mathscr{A}_{p} be the set of lines in \mathscr{A} passing through the point p. Let $M_{p}=\mathbb{C}^{2}-\mathscr{A}_{p}$. Then there exist inclusion maps $i_{p}: M_{p} \hookrightarrow G F_{n}^{2}$. By a result of Brieskorn [3] the maps i_{p} induce an isomorphism

$$
\bigoplus_{p} H_{2}\left(M_{p}\right) \cong H_{2}\left(G F_{n}^{2}\right) .
$$

Note that each relation in $\pi_{1}\left(G F_{n}^{2}\right)$ arises from an intersection point p of \mathscr{A}_{b}. Wc are thus reduced to the complement of n lines through the origin in \mathbb{C}^{2}. Denote this space by M. The dimension of $H_{2}(M)$ is equal to $n-1$ [15]. Now, consider the dimension of the space $\mathscr{L} \subset \Lambda^{2} H_{1}(M)$ spanned by the linearized relations for $\pi_{1}(M)$. The linearizations take the form

$$
a_{i} \wedge\left(a_{1}+\cdots+a_{n}\right) \quad \text { for } 1 \leq i \leq n
$$

where a_{i} generates $H_{1}(M)$. However, the sum of all of these is equal to zero. Thus, the dimension of \mathscr{L} is equal to $n-1$, as required.

Now consider the map β_{1}. The quotient L_{1} / L_{0} is isomorphic to $H_{1}\left(G F_{n}^{2}\right) \otimes H_{1}\left(X_{n}^{2}\right)$. But this is clearly isomorphic to $\tilde{L}_{1} / \tilde{L}_{0}$ via β_{1} by Eq. (24). The map β_{2} is an isomorphism by induction. We conclude that the map $\varphi_{n_{*}}$ is also an isomorphism.

We now complete the proof by considering integer coefficients. First, since the map $H_{2}\left(P L_{n}\right) \rightarrow \Lambda^{2} H_{1}\left(P L_{n}\right)$ is injective, the dimension of $H_{2}\left(P L_{n}\right)$ is cqual to N. Thus, $H_{2}\left(P L_{n}, \mathbb{Z}\right)$ is torsion free and the map $D: H_{2}\left(P L_{n}, \mathbb{Z}\right) \rightarrow \Lambda^{2} H_{1}\left(P L_{n}, \mathbb{Z}\right)$ is well defined. Hence, we have the following commutative diagram:

Let $\quad I_{1}=\operatorname{Im}\left\{D: H_{2}\left(P L_{n}, \mathbb{Z}\right) \rightarrow \Lambda^{2} H_{1}\left(P L_{n}, \mathbb{Z}\right)\right\}, \quad$ and $\quad I_{2}=\operatorname{Im}\left\{D: H_{2}\left(P_{n}^{2}, \mathbb{Z}\right) \rightarrow \Lambda^{2} H_{1}\right.$ $\left.\left(X_{n}^{2}, \mathbb{Z}\right)\right\}$. To complete the proof it suffices to show that $I_{1}=I_{2}$. Note that $I_{1} \subset I_{2}$. Thus, it suffices to show that I_{1} is primitive in I_{2}, i.e.

$$
I_{1}=\left(I_{1} \otimes \mathbb{Q}\right) \cap I_{2} .
$$

This is easily seen using the isomorphism $G r_{\bullet}^{L} I_{1} \cong\left(G r_{0}^{L} I_{1} \otimes \mathbb{Q}\right) \cap I_{2}$.

8. Infinitesimal vector braid relations

We begin by recalling the infinitesimal presentation of the classical pure braid group. Given a group G we denote its group algebra over \mathbb{C} by $\mathbb{C}[G]$. Let $\varepsilon: \mathbb{C}[G] \rightarrow \mathbb{C}$ be the augmentation homomorphism and J be equal to the kernal of ε. The powers of J define a topology on $\mathbb{C}[G]$ which is called the J-adic topology. In what follows, we let $\mathbb{C}\left\langle Y_{i}\right\rangle$ denote the free associative, non-commutative algebra in the indeterminants Y_{i} and $\mathbb{C}\left\langle\left\langle Y_{i}\right\rangle\right\rangle$ denote the non-commutative formal power series ring in the indeterminants Y_{i}. In [13] Kohno proves that the J-adic completion of the group ring $\mathbb{C}\left[P_{n}\right]$ is isomorphic to $\mathbb{C}\left\langle\left\langle X_{i j}\right\rangle\right\rangle, 1 \leq i<j \leq n$, modulo the two-sided ideal generated by the relations
$\left[X_{i j}, X_{i k}+X_{j k}\right]$ when i, j, k are distinct,
$\left[X_{i j}, X_{r s}\right]$ when i, j, r, s are distinct.
We now find the corresponding infinitesimal presentation for the group P_{n}^{2}.
Proposition 8.1. The completed group ring of P_{n}^{2} is isomorphic to $\mathbb{C}\left\langle\left\langle X_{i j k}\right\rangle\right\rangle, 1 \leq$ $i<j<k \leq n$, modulo the two-sided ideal generated by the relations
[$\left.X_{i j k}, X_{r s t}\right]$ when i, j, k, r, s, t are distinct,
[$X_{i j k}, X_{r s k}$] when i, j, k, r, s are distinct,
$\left[X_{i j k}, X_{j k l}+X_{i k l}+X_{i j l}\right] \quad$ when i, j, k, l are distinct
and

$$
\begin{equation*}
\left[X_{r s t}, X_{1 i j}+\cdots+X_{i-1, i j}+X_{i, i+1, j}+\cdots+X_{i, j-1, j}+X_{i j, j+1}+\cdots+X_{i j n}\right] \tag{28}
\end{equation*}
$$

which holds when rst is one of the triples

$$
\{1 i j\}, \ldots,\{i-1, i j\},\{i, i+1, j\}, \ldots,\{i, j-1, j\},\{i j, j+1\}, \ldots,\{i j n\}
$$

where $1<i<j<n$.
Proof. This is a special case of a result due to K.-T. Chen [5]. We apply the version of this result which appears in [9, pp. 28-29]. Observe that the tensor algebra $\bigoplus_{n=0}^{\infty} H_{1}\left(X_{n}^{2}, \mathbb{C}\right)^{\otimes n}$ on $H_{1}\left(X_{n}^{2}, \mathbb{C}\right)$ is isomorphic to $\mathbb{C}\left(X_{i j k}\right\rangle$, where the indeterminant $X_{i j k}$ denotes the homology class of the generator $a_{i j k}$ of the group P_{n}^{2}. This is a direct consequence of Lemma 7.11 and Theorem 7.14. Let

$$
\delta: H_{2}\left(X_{n}^{2}, \mathbb{C}\right) \rightarrow H_{1}\left(X_{n}^{2}, \mathbb{C}\right)^{\otimes 2} \subset \mathbb{C}\left\langle X_{i j k}\right\rangle
$$

be the dual of the cup product. According to [9, pp. 28-29], the completed group ring of P_{n}^{2} is isomorphic to $\mathbb{C}\left\langle\left\langle X_{i j k}\right\rangle\right\rangle /(\mathrm{im} \delta)$. Using the results contained in the proof of Theorem 7.20 the ideal (im δ) is simply the two-sided ideal generated by the relations (25)-(28).

9. Affine versus projective revisited

As we saw in Section 2, we can consider motions of points in \mathbb{A}^{m} as being motions of points in \mathbb{P}^{m}. This has some interesting consequences for the groups P_{n}^{2} and Q_{n}^{2}. First, note that we have the natural surjective map from $P_{n}^{2} \rightarrow Q_{n}^{2}$ (see Lemma 2.1). Thus, we immediately see that Q_{n}^{2} is generated by $a_{i j k}$, for $1 \leq i<j<k \leq n$. However, since we are now looking at points in \mathbb{P}^{2} we get some extra relations amongst these generators, which are analogous to relations (4) of Q_{n}.

Lemma 9.1. For $1 \leq k \leq n$, the following relations hold in Q_{n}^{2} :

$$
\begin{align*}
& a_{123} a_{124} \ldots a_{12 n} a_{134} \ldots a_{13 n} a_{145} \ldots a_{1, n-1, n}=1 \\
& a_{123} a_{124} \ldots a_{12 n} a_{234} \ldots a_{23 n} a_{245} \ldots a_{2, n-1, n}=1 \\
& a_{12 k} a_{13 k} \ldots a_{k-2, k-1, k} a_{1 k, k+1} \ldots a_{k-1, k, k+1} \ldots a_{1 k n} \ldots a_{k-1, k n}=1 . \tag{29}
\end{align*}
$$

Proof. Each of these relations arises from a product relation which occurs in the fiber of the projection, $Y_{n}^{2} \rightarrow Y_{n-1}^{2}$, obtained by forgetting the k th point. These can then be written in the required form using the reciprocity law. See Section 12.4 for more details.

We define a group $Q L_{n}^{2}$ by adjoining the extra relations (29) to the presentation of $P L_{n}$, and conjecture that this group is isomorphic to Q_{n}^{2}. An argument similar to that
in the proof of Theorem 7.14 can be used to show that the first homology groups of $Q L_{n}$ and Q_{n}^{2} are the same, and are free abelian of rank $\binom{n}{3}-n$.

We can exploit the action of $P G L_{3}(\mathbb{C})$ on Y_{n}^{2} to better understand the group Q_{n}^{2}. As we have already seen, the action can be used to show that the group Q_{n}^{2} has a cental element of order three (see Lemma 2.6). Denote this element by τ. In fact, by analysing the action of $P G L_{3}(\mathbb{C})$ on Y_{n}^{2} we can find an explicit formula for this element in terms of the generators $a_{i j k}$.

Lemma 9.2. The element τ is given by the formula

$$
\tau=\tau_{3} \ldots \tau_{n},
$$

where

$$
\tau_{i}=a_{12 i} a_{13 i} \ldots a_{i-2, i-1, i} .
$$

Proof. We analyze where the map $P G L_{3}(\mathbb{C}) \rightarrow Y_{n}^{2}$ sends the generator $\rho: S^{1} \rightarrow P G$ $L_{3}(\mathbb{C})$ of $\pi_{1}\left(P G L_{3}(\mathbb{C})\right.$), given by the formula

$$
\rho: \theta \mapsto\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mathrm{e}^{i \theta}
\end{array}\right]
$$

where $0 \leq \theta \leq 2 \pi$.
Choose coordinates $(x, y), x, y \in \mathbb{R}$ for the affine part of $\mathbb{P}^{2}(\mathbb{R})$. Let the points b_{1} and b_{2} be equal to $(0,0)$ and $(0,1)$, respectively. Denote the coordinate of the point b_{i} by (x_{i}, y_{i}), for $i \geq 3$. The line $L_{i}^{\infty}(\mathbb{R})$ is equal to the vertical line passing through $\left(x_{i}, y_{i}\right)$. We "stretch out" the points b_{i} on the curve $\psi(\mathbb{R})$ so that they satisfy the following condition. We require that the line $L_{i, i+1}(\mathbb{R})$ intersects the line $L_{i-1}^{\infty}(\mathbb{R})$ at a point whose y coordinate is less than $-y_{i-1}$. Note we may do this whilst remaining within the basepoint set B which was defined in Section 6.

The loop ρ will be sent to the loop $\tau: S^{1} \rightarrow Y_{n}^{2}$ given by the formula

$$
\tau: \theta \rightarrow\left((0,0),(0,1),\left(x_{3}, \mathrm{e}^{\mathrm{i} \theta} y_{3}\right), \ldots,\left(x_{n}, \mathrm{e}^{\mathrm{i} \theta} y_{n}\right)\right)
$$

On "squeezing" the points back to their original position, we see that the loop which each point b_{i} follows in the loop τ is homotopic to the loop

$$
\tau_{i}=a_{12 i} a_{13 i} \ldots a_{i-2, i-1, i} .
$$

We now show that the loops τ_{i} commute with each other. Fix $i<j$. Note that the loop τ_{j} encircles the lines $L_{r s}$ for $1 \leq r<s \leq j-1$. As the point b_{i} follows the loop τ_{i} the lines $L_{r s}$ always remain within the loop τ_{j}. Thus, the motion of the point b_{i} along τ_{i} is independent of the loop τ_{j}.

Fig. 12. Let's do the twist!.

Finally, note that since the τ_{i} commute we have the expression

$$
\tau=\tau_{3} \ldots \tau_{n}
$$

as required.
The element τ of order three in Q_{n}^{2} is analogous to the full-twist Δ of the classical braid group of the sphere. We recall some results about the classical braid groups [1]. In the classical case P_{n} is a group with center \mathbb{Z} generated by the full-twist

$$
\Delta=\delta_{2} \ldots \delta_{n}
$$

where

$$
\delta_{i}=a_{1 i} a_{2 i} \ldots a_{i-1, i}
$$

The elements δ_{i} commute with one other (see Fig. 12). Moreover, Δ is a central element of Q_{n} which has order 2.

Using the classical braid groups as a model, it is natural to conjecture that τ generates the center of the group P_{n}^{2}.

10. Conjugation

In this section we describe a method for conjugating generators of $\pi_{1}\left(G F_{n}^{2}\right)$ by generators of the group P_{n-1}^{2}.

It will be helpful to first discuss the classical pure braid case. Recall the short exact sequence (2). To find a presentation for P_{n} from one for P_{n-1}, we have to be able to write $a_{i j}^{-1} a_{r n} a_{i j}$ as a word in the group L_{n-1}, where $1 \leq i<j \leq n-1$, and $1 \leq r \leq n-1$. We can do this by picturing the loops $a_{r n}$ and $a_{i j}$ in \mathbb{C} (Fig. 13). As we "unwind" the braid $a_{i j}^{-1} a_{r n} a_{i j}$, the point j moves around point i and "pushes" the loop $a_{r n}$ with it. At the end of the unwinding process, we are left with a loop in L_{n-1}, which will be the required conjugate of $a_{r n}$. We can describe this loop in terms of the fiber generators by recording where this loop crosses vertical half-lines below the points $\{1, \ldots, n-1\}$. For example, way in which the relation

$$
a_{i j}^{-1} a_{r s} a_{i j}=a_{i s} a_{r s} u_{i s}^{-1}, \quad 1 \leq i<r=j<s \leq n,
$$

in the group P_{n} is obtained is shown in Fig. 14.
We now describe a similar process for conjugating in P_{n}^{2}. Let $L(\mathbb{R})$ denote the line $L_{n}^{\infty}(\mathbb{R})$ which we used to define the loop $a_{r s n}, 1 \leq r<s \leq n-1$. Let $p_{r s}$ denote the intersection of line $L_{r s}(\mathbb{R})$ with $L(\mathbb{R})$. We picture the generator $a_{r s n}$ contained in L in Fig. 15.

Fig. 13. The generator $a_{i j}$ of P_{n}.

Fig. 14. Conjugation in P_{n}.

Fig. 15. The generator $a_{r s n}$ of P_{n}^{2}.

Note that if we move the point b_{k} for $1 \leq k \leq n-1$, then we will induce a motion of the points $p_{r s}$ within L. Hence, when point b_{k} follows the loop $a_{i j k}$, we can picture the induced motions of the points $p_{r s}$ in L. We can use this picture to determine how generator $a_{i j k}$ conjugates generator $a_{r s n}$ by recording how the movements of the $p_{r s}$ within L deform the loop $a_{r s n}$.

At this point we need to make some observations which will simplify the calculation. First, note that the motion of the point b_{k} only induces a motion of the points $p_{r k}$. Moreover, by choosing the loop l which the point b_{k} follows on $a_{i j k}$ whilst going around $L_{i j}(\mathbb{R})$ to be small enough (recall the definition of the generator $a_{i j k}$), we can ensure that only the points $p_{j k}$ and $p_{i k}$ go around $p_{i j}$ as the point b_{k} goes around l. Hence, we need only consider the motion of the points $p_{i k}$ and $p_{j k}$ within L. We picture the motion of these points induced by the motion of b_{k} in Fig. 16.

In Fig. 17 we picture how to obtain the relation

$$
a_{i j k}^{-1} a_{r s n} a_{i j k}=a_{i j n} a_{i k n} a_{r s n} a_{i k n}^{-1} a_{i j n}^{-1}, \quad j k=r s
$$

in the group P_{n}^{2}. The other conjugation relations are found in the a similar way.

11. The reciprocity law

In this section we define a homotupy between two loops within X_{n}^{2}, which we call the reciprocity law. This will be used in Section 12 to lift certain relations from P_{n-1}^{2} to P_{n}^{2}.

To understand the reciprocity law, it is helpful to understand the analogous law within the classical pure braid group. We may consider the generator $a_{i j} \in P_{n}$ to be the braid whose j th string passes around the i th string. However, by "pulling the j th string tight" we can also consider this braid to be the one whose i th string passes around

Fig. 16. Induced motion.

Fig. 17. Conjugation in P_{n}^{2}.

Fig. 18. The reciprocity law for P_{n}.
the j th string (see Fig. 18). We label this new loop $\alpha_{i j}$. The reciprocity law for P_{n} is simply the statement that the loop $a_{i j}$ is homotopic to the loop $\alpha_{i j}$ in X_{n}^{1}.

Now, we describe the reciprocity law for P_{n}^{2}. First, we need to define a new loop $\alpha_{i j k}$ in X_{n}^{2}. Let F_{j} be the fiber defined in Section 6. Choose a point $q \in I(\mathbb{R})$ on the line $L_{i k}(\mathbb{R})$ within the disc of radius ε about the point b_{k}. Let the line $L^{\prime}(\mathbb{R})$ denote the real line joining b_{j} and q. Then we define the loop $\alpha_{i j k}$ to be the loop in L^{\prime}, based at b_{j}, which goes around q. To prove the reciprocity law for P_{n}^{2} we will use the following key lemma.

Lemma 11.1. The two loops $a_{i, k-1, k}$ and $\alpha_{i, k-1, k}$ are homotopic in X_{n}^{2} relative to the basepoint b, for $2 \leq i<k \leq n$ (see Fig. 19).

The proof is computational, and is given in Section 13.
Proposition 11.2 (The reciprocity law). The loops $a_{i j k}$ and $\alpha_{i j k}$ are homotopic in X_{n}^{2} relative to the basepoint $b \in B$, for $1<i<j<k<n$ (see Fig. 20).

Proof. We find an explicit homotopy. Commence the homotopy by shrinking the loop $a_{i j k}$. Let $\varepsilon>0$ be a small real number. Let $L(\mathbb{R})$ denote the line L_{k}^{∞} which was used to define the loop $a_{i j k}$. Let p be a point on $\psi(\mathbb{R})$ lying between the points b_{k-1} and b_{k}. Let $\tilde{L}(\mathbb{R})$ be the line joining the points b_{j} and p. Let v be a vector which orients the line $\tilde{L}(\mathbb{R})$ in the direction from b_{j} to p. Move the point b_{j} up distance ε into \tilde{L} in the direction $i v$. Then move b_{j} along the line above $\tilde{L}(\mathbb{R})$ until it reaches the point in \tilde{L} which is distance ε in the direction $i v$ above p. Finally, move b_{j} back down to p. During the motion of b_{j} the points $p_{i j}=L \cap L_{i j}$ will move within the line L. Shrink the loop $a_{i j k}$, so that it follows the motions of the $p_{i j}$.
By sliding points along $\psi(\mathbb{R})$ whilst remaining in the base point set B, if necessary, we will now be in the same situation as Lemma 11.1 with $j=k$. The shrunken version of $a_{i j k}$ is thus homotopic to the loop $\alpha_{i, k-1, k}$. By sliding points again, if necessary, we now move the point b_{j} back to its starting position along the same path which

Fig. 19. Reciprocity.
it originally took. During this process the loop $\alpha_{i, k-1, k}$ will get "stretched out". The resulting loop is homotopic to $\alpha_{i j k}$.

12. Lifting relations

In this section we show how to lift relations from the group P_{n-1}^{2} to P_{n}^{2} in order to complete the proof of Theorem 7.2. Note that unlike sequence (2) for the pure braid group, which is split, up until now it has not been possible to find a splitting for the sequence (3). Hence, it is necessary to overcome the problem of lifting relations from P_{n-1}^{2} to P_{n}^{2} in an alterative way. We also show how to lift relation (29) from Q_{n-1}^{2} to Q_{n}^{2}. Before we begin lifting relations, we describe the main idea that we shall use.

First, consider the classical pure braid groups. We may lift a relation from P_{n-1} to P_{n}, if the nth string does not obstruct the homotopy describing this relation in P_{n-1}. Since the nth string does not obstruct any of the homotopies describing the relations in P_{n-1}, they all lift.

A similar idea applies in lifting relations from P_{n-1}^{2} to P_{n}^{2}, although in this case we get some obstructions. The point b_{n} introduces the lines $L_{i n}(\mathbb{C})$ into $G F_{n}^{2}$. If it is possible to describe a relation in P_{n-1}^{2} by a homotopy within $F_{k}, 1 \leq k \leq n-1$, which does not intersect any of the $L_{i n}$, then we can lift this relation. This is because we

Fig. 20. The reciprocity law for P_{n}^{2}.
have the sequence ${ }^{4}$

$$
\pi_{1}\left(F_{k}, b_{k}\right) \rightarrow P_{n}^{2} \rightarrow P_{n-1}^{2} \rightarrow 1
$$

However, if it is impossible to describe a relation in P_{n-1}^{2} by a homotopy which does not intersect the $L_{i n}$, then we have to use the reciprocity law to lift the relation.

12.1. Relations (15)-(17)

Lemma 12.1. For $1 \leq k \leq n-1$ the relations (15)-(17) lift from P_{n-1}^{2} to P_{n}^{2}.
Proof. For $1 \leq k \leq n-1$ the relations (15)-(17) hold in $\pi_{1}\left(F_{k}\right)$.

12.2. Relation (19)

Lemma 12.2. For $1 \leq k \leq n-1$ the relation (19) lifts from P_{n-1}^{2} to P_{n}^{2}.

[^4]

Fig. 21. How Hopf relations lift.

Proof. Relation (19) is described by a homotopy $H:[0,1] \times[0,1] \rightarrow X_{n-1}^{2}$. Let $R_{l} \subset L_{l}^{\infty}$ be equal to $(\operatorname{im} H) \cap L_{l}^{\infty}$. Then the homotopy H can be chosen so that the lines $L_{i n}$ within F_{k} do not intersect the region R_{l} for $l=j, k$. This is because the points b_{1}, \ldots, b_{n} satisfy the lexcigon condition. Hence, H lifts to X_{n}^{2}.

12.3. Relation (18)

This case is not the same as the previous two, since the lines $L_{i n}$ in F_{k} obstruct the homotopy describing relation (18) within P_{n-1}^{2}. This is because the lines $L_{i n}$ always pass through the point b_{i}. First note that, for fixed k and j, the relation

$$
\begin{equation*}
\left[a_{i j k}, \ldots, a_{j-1, j k}, \tilde{a}_{j, j+1, k}, \ldots, \tilde{a}_{j, k-1, k}, \alpha_{j k, k+1}, \ldots, \alpha_{j k, n-1}\right]=1 \tag{30}
\end{equation*}
$$

holds in $\pi_{1}\left(F_{k}\right)$ (and so also in P_{n}^{2}). This relation arises from the Hopf link of the point b_{j}. To understand why this is the case see Fig. 21. Now, using the reciprocity law relation (30) can be rewritten as follows:

$$
\left[a_{i j k}, \ldots, a_{j-1, j k}, \tilde{a}_{j, j+1, k}, \ldots, \tilde{a}_{j, k-1, k}, a_{j k, k+1}, \ldots, a_{j k, n-1}\right]=1
$$

Thus, relation (18) holds P_{n}^{2}. Now we simply note that

$$
\begin{gathered}
\left(p_{n}^{2}\right)_{*}\left(\left[a_{i j k}, \ldots, a_{j-1, j k}, \tilde{a}_{j, j+1, k}, \ldots, \tilde{a}_{j, k-1, k}, a_{j k, k+1}, \ldots, a_{j k, n-1}\right]\right) \\
=\left[a_{i j k}, \ldots, a_{j-1, j k}, \tilde{a}_{j, j+1, k}, \ldots, \tilde{a}_{j, k-1, k}, a_{j k, k+1}, \ldots, a_{j k, n-2}\right]
\end{gathered}
$$

for $1 \leq k \leq n-1$. Hence, we have lifted relation (18).

12.4. Relation (29)

We conclude this section by showing how to lift the product relations (29) from Q_{n-1}^{2} to Q_{n}^{2}. We can use the same method that we used to lift relation (18). Let G_{k} denote the fiber of the projection, $Y_{n}^{2} \rightarrow Y_{n-1}^{2}$, obtained by forgetting the k th point. Then for each k the relation (29) holds in $\pi_{1}\left(G_{k}\right)$ as a consequence of the reciprocity law. Thus relation (29) holds in Q_{n}^{2}. Now note that,

$$
\begin{aligned}
& \left(p_{n}^{2}\right)_{*}\left(a_{12 k} a_{13 k} \cdots a_{k-2, k-1, k} a_{1 k, k+1} \cdots a_{k-1, k, k+1} \cdots a_{1 k n} \cdots a_{k-1, k n}\right) \\
& \quad=a_{12 k} a_{13 k} \cdots a_{k-2, k-1, k} a_{1 k, k+1} \cdots a_{k-1, k, k+1} \cdots a_{1 k, n-1} \cdots a_{k-1, k, n-1}
\end{aligned}
$$

for $1 \leq k \leq n-1$. Hence, we have lifted relation (29).
It is informative to understand how this relation lifts. First, let us understand the analogous situation in the pure braid group on \mathbb{P}^{1}. In Fig. 22 we picture how to lift the relation

$$
\begin{equation*}
a_{1, n-1} a_{2, n-1} \cdots a_{n-2, n-1}=1 \tag{31}
\end{equation*}
$$

which holds in Q_{n-1}, to the relation

$$
a_{1 n} a_{2 n} \cdots a_{n-1, n}=1
$$

which holds in Q_{n}. Note that the nth string will always obstruct any homotopy which describes relation (31) in the group Q_{n-1}.

We now show how to lift relation (29). First, consider this relation in Q_{n-1}^{2}. This may be rewritten as the product

$$
\begin{equation*}
a_{12 k} \cdots a_{1, k, n-1} a_{23 k} \cdots a_{k-2, k-1, k} \alpha_{k, k+1, k+2} \cdots \alpha_{k, n-1, n-2} \tag{32}
\end{equation*}
$$

using the reciprocity law. We see that a homotopy describing relation (29) can be chosen to lie in the line L_{k}^{∞} (Fig. 23). However, the lines $L_{\text {in }}$ intersect $L_{k}^{\infty}(\mathbb{R})$, and so the product (32) will be homotopic to a loop which encircles the points $L(\mathbb{R}) \cap L_{\text {in }}(\mathbb{R})$, within L_{k}^{∞}. This is homotopic to the product

$$
\alpha_{k, n-1, n}^{-1} \ldots \alpha_{k, k+1, n}^{-1} \alpha_{k-1, k, n}^{-1} \ldots \alpha_{1, k, n}^{-1} .
$$

The reciprocity law allows us to rewrite this expression in terms of the $a_{i j n}$. Thus, we have lifted relation (29).

Fig. 22. Lifting a product from Q_{n-1} to Q_{n}.

13. Proof of Lemma 11.1

We prove Lemma 11.1 in the following way. In Section 13.1, we choose a base point x in the set $B \subset X_{n}^{2}$. We then define two loops $\xi_{m}, \tilde{\xi}_{m}$, based at x, and show that these loops are homotopic relative to x. In Section 13.2, we generalize the result of Section 13.1. Finally, in Section 13.3, we use the results of Sections 13.1 and 13.2 to prove Lemma 11.1.
13.1. We begin by choosing the base point x in $B \subset X_{n}^{2}$. Note that $X_{n}^{2} \subset\left(\mathbb{C}^{2}\right)^{m}$. The curve ψ is then given by the equation $\psi(t)-t^{2}$. Let

$$
\left(x_{m}, y_{m}\right)=(-m / 2 n, \psi(-m / 2 n))=\left(-m / 2 n,(m / 2 n)^{2}\right), \quad 1 \leq m \leq n-2 .
$$

Choose $\varepsilon \in \mathbb{R}$ to be a sufficiently small positive number. Let $u=\left((1-\varepsilon),(1-\varepsilon)^{2}\right)$ and $v=\left((1+\varepsilon),(1+\varepsilon)^{2}\right)$. Then, we define $x \in X_{n}^{2}$ to be the point

$$
\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-2}, y_{n-2}\right), u, v\right)
$$

Fig. 23. Lifting a product from Q_{n-1}^{2} to Q_{n}.
We now define two loops ξ_{m} and ξ_{m} in X_{n}^{2}, and show that they are homotopic relative to x.

Let p_{m} be the y co-ordinate of the intersection of the line $x=(1+\varepsilon)$ and the line joining points u and (x_{m}, y_{m}). Then we have

$$
p_{m}=2 \varepsilon((1-\varepsilon)-(m / n))+(1-\varepsilon)^{2} .
$$

Let q_{m} be the y co-ordinate of the intersection of the line $x=(1-\varepsilon)$ and the line joining points v and (x_{m}, y_{m}). Then we have

$$
q_{m}=-2 \varepsilon((1+\varepsilon)-(m / n))+(1+\varepsilon)^{2}
$$

Let

$$
r_{m}=(1+\varepsilon)^{2}-\left(p_{m}+p_{m+1}\right) / 2
$$

and

$$
s_{m}=\left(q_{m}+q_{m+1}\right) / 2-(1-\varepsilon)^{2} .
$$

These will be the "radii" of the loops ξ_{m} and $\tilde{\xi}_{m}$, respectively (see Fig. 24).

Fig. 24.

Define

$$
\xi_{m}(t)=\left((1+\varepsilon),(1+\varepsilon)^{2}+r_{m}\left(\mathrm{e}^{\mathrm{i} t}-1\right) / 2\right) \text { for } 0 \leq t \leq 2 \pi
$$

and

$$
\tilde{\xi}_{m}(t)=\left((1-\varepsilon),(1-\varepsilon)^{2}+s_{m}\left(1-\mathrm{e}^{\mathrm{i} t}\right) / 2\right) \quad \text { for } 0<t<2 \pi .
$$

A homotopy, $H_{m}(s, t)$, where $0 \leq s \leq 1$ and $0 \leq t \leq 2 \pi$, between the loops ξ_{m} and $\tilde{\xi}_{m}$ is now given explicitly by

$$
H_{m}(s, t)=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-2}, y_{n-2}\right),\left(u_{1}(s, t), u_{2}(s, t)\right),\left(v_{1}(s, t), v_{2}(s, t)\right)\right),
$$

where

$$
\left(u_{1}(s, t), u_{2}(s, t)\right)=\left((1-\varepsilon),(1-\varepsilon)^{2}+(1-s) s_{m}\left(1-\mathrm{e}^{\mathrm{i} t}\right) / 2\right)
$$

and

$$
\left(v_{1}(s, t), v_{2}(s, t)\right)=\left((1+\varepsilon),(1+\varepsilon)^{2}+s r_{m}\left(\mathrm{e}^{\mathrm{i} t}-1\right) / 2\right)
$$

Note that $H_{m}(0, t)=\xi_{m}(t)$ and $H_{m}(1, t)=\tilde{\xi}_{m}(t)$ for $0 \leq t \leq 2 \pi$. Also, note that $H_{m}(s, 0)$ $=x$ and $H_{m}(s, 2 \pi)=x$ for $0 \leq s \leq 1$. We are thus reduced to showing that the homotopy lies in X_{n}^{2}.

Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be n points in \mathbb{C}^{2}. We will need to check whether threc of these points lie on a line. The following condition will be convenient for our calcula-
tions. No three of these points will lie on a line if and only if no 3×3 minor of the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
y_{1} & y_{2} & \cdots & y_{n}
\end{array}\right]
$$

vanishes. Hence, to prove that the loops ξ_{m} and $\tilde{\xi}_{m}$ are homotopic, it will be sufficient to show that no 3×3 minor the matrix

$$
H(s, t)=\left[\begin{array}{ccccc}
1 & \cdots & 1 & 1 & 1 \\
x_{1} & \cdots & x_{n-2} & u_{1}(s, t) & v_{1}(s, t) \\
y_{1} & \cdots & y_{n-2} & u_{2}(s, t) & v_{2}(s, t)
\end{array}\right]
$$

vanishes for any $0 \leq t \leq 2 \pi$ and $0 \leq s \leq 1$.
We split this calculation up into three cases. Let C_{i} denote the i th column of H, for $1 \leq i \leq n$. Since the points corresponding to columns C_{1}, \ldots, C_{n-2} lie on $\psi(\mathbb{R})$ and are fixed for all s and t, it suffices to check that the determinants of the following matrices do not vanish, for all $1 \leq k<l \leq n-2$:

$$
\begin{align*}
& {\left[C_{k}, C_{l}, C_{n-1}\right]} \tag{33}\\
& {\left[C_{k}, C_{l}, C_{n}\right]} \tag{34}\\
& {\left[C_{k}, C_{n-1}, C_{n}\right]} \tag{35}
\end{align*}
$$

13.1.1. Determinant of (33)

It suffices to check this only when $t=\pi$, since otherwise the determinant of matrix (34) has non-zero complex part and is thus non-zero. Let t be equal to π. Then matrix (33) is equal to

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-(k / 2 n) & -(l / 2 n) & (1-\varepsilon) \\
(k / 2 n)^{2} & (l / 2 n)^{2} & (1-\varepsilon)^{2}+(1-s) s_{m}
\end{array}\right]
$$

Thus, we need only show that the determinant of this matrix does not vanish for any $0 \leq s \leq 1$. Expanding out the determinant of this matrix gives us the following expression:

$$
(k / 2 n-l / 2 n)\left(\left(k l / 4 n^{2}\right)+(1-\varepsilon)^{2}+(1-\varepsilon)(l / 2 n+k / 2 n)-(1-s) s_{m}\right)
$$

Suppose that this expression is equal to zero for some s. Then, by choosing ε sufficiently small we can force the inequality

$$
s>(1+1 / 2 n)^{2}
$$

But $0 \leq s \leq 1$, and we are lead to a contradiction.

13.1.2. Determinant of (34)

It suffices to check this only when $t=\pi$, since otherwise the determinant of matrix (34) has non-zero complex part and is thus non-zero. Let t be equal to π. Then matrix (34) is equal to

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-(k / 2 n) & -(l / 2 n) & (1+\varepsilon) \\
(k / 2 n)^{2} & (l / 2 n)^{2} & (1+\varepsilon)^{2}+s r_{m}
\end{array}\right]
$$

Thus, we need only show that the determinant of this matrix does not vanish for any $0 \leq s \leq 0$. Expanding out the determinant of this matrix gives us the following expression:

$$
(k / 2 n-l / 2 n)\left(\left(k l / 4 n^{2}\right)+(1+\varepsilon)^{2}+(1+\varepsilon)(l / 2 n+k / 2 n)-s r_{m}\right)
$$

Suppose that this expression is equal to zero for some s. Then, by choosing ε sufficiently small, we can force the inequality

$$
s>(1+1 / 2 n)^{2} .
$$

But $0 \leq s \leq 1$, and we are lead to a contradiction.

13.1.3. Determinant of (35)

This case is more complicated since the imaginary part of the determinant of matrix (35) may vanish. By simplifying the determinant, we obtain the following expression for the imaginary part of the determinant of matrix (35):

$$
\begin{equation*}
-\sin t\left(\left(s_{m}(1+l / 2 n+\varepsilon)+s\left((1+l / 2 n-\varepsilon) r_{m}-(1+l / 2 n+\varepsilon) s_{m}\right)\right) / 2\right) \tag{36}
\end{equation*}
$$

Note that $\sin t$ can only vanish when $t=0$ or when $t=\pi$. We explain what happens in the case when $t=\pi$ later. Suppose that t is not equal to 0 or π and that expression (36) vanishes. In this case s would be equal to

$$
-s_{m}(1+l / 2 n+\varepsilon) /\left((1+l / 2 n-\varepsilon) r_{m}-(1+l / 2 n+\varepsilon) s_{m}\right)
$$

A computation shows that this quantity must be greater than one. Hence, we are lead to a contradiction.

The final case we are left with is when $t=\pi$. In this case, by supposing that the determinant vanishes, we obtain

$$
\begin{equation*}
s K=1-2 \varepsilon(1+l / n-\varepsilon) / s_{m} \tag{37}
\end{equation*}
$$

where,

$$
K=\left(\left((1+l / 2 n-\varepsilon) r_{m}\right) /\left((1+l / 2 n+\varepsilon) s_{m}\right)-1\right)
$$

A computation shows that K cannot be equal to zero, and hence we may divide Eq. (37) by K. Again, we are left with s equal to a quantity which, by allowing ε to
be sufficiently small, may be shown to be greater than one. Thus, the image of the map H_{k} lies in X_{n}^{2} and the loops ξ_{m} and $\tilde{\xi}_{m}$ are homotopic.
13.2. We now generalize the result of Section 13.1. To prove Lemma 11.1, we will need to place points on the curve $\psi(\mathbb{R})$ to the right of the points u and v, without obstructing the homotopy between the loops ξ_{m} and $\tilde{\xi}_{m}$. We do this by placing our extra points on $\psi(\mathbb{R})$ so that they are "far away" from u and v. In this way, we can ensure that the lines introduced by adding in the new points do not intersect the complexified lines $x=1+\varepsilon$ and $1-\varepsilon$ within the circles of radius r_{m} and s_{m} respectively. Now, it is clear that the lines introduced by adding the new points do not obstruct the homotopy between the loops ξ_{m} and $\tilde{\xi}_{m}$.
13.3. We now complete the proof of Lemma 11.1. Recall that we are trying to show that the loops $a_{i, k-1, k}$ and $\alpha_{i, k-1, k}$ are homotopic relative to b. We can slide points up and down $\psi(\mathbb{R})$ as long as we remain in the contractible set B defined in Section 6. Slide the points $\left\{b_{k+1}, \ldots b_{n}\right\}$ along the curve $\psi(\mathbb{R})$ until they are "far to the right" of the points b_{k-1} and b_{k}. Now slide points b_{k-1} and b_{k} into positions u and v of Section 13.1. Finally, slide points $\left\{b_{1}, \ldots, b_{k-2}\right\}$ so that we are in the situation of Section 13.2. During the sliding process the loops $a_{i, k-1, k}$ and $\alpha_{i, k-1, k}$ will be deformed; we denote the resulting loops by the same symbol.

The loop ξ_{m} lies in the complexification of the line $x=1+\varepsilon$. The loop $a_{i, k-1, k}$ can also be homotoped into this line. Similarly, the loop $\alpha_{i, k-1, k}$ can be homotoped into the complexification of the line $x=1-\varepsilon$, in which the loop $\tilde{\xi}_{m}$ lies. Hence, we are reduced to showing that certain loops are homotopic in punctured complex lines. In this situation we have

$$
a_{i, k-1, k}=\xi_{i} \xi_{i-1}^{-1}
$$

and

$$
\alpha_{i, k-1, k}=\tilde{\xi}_{i} \tilde{\xi}_{i-1}^{-1} .
$$

We know from Section 13.2 that the loops ξ_{m} and $\tilde{\xi}_{m}$ are homotopic for $1 \leq m \leq k-\mathbf{2}$. Thus, the loop $a_{i, k-1, k}$ is homotopic to the loop $\alpha_{i, k-1, k}$. By sliding all points back to the basepoint b, whilst remaining in the set B, we complete the proof of Lemma 11.1.

Acknowledgements

This paper is a shortened version of my doctoral thesis which was written at Duke University under the supervision of Professor Richard Hain. I would like to thank Professor Hain for his ideas, help and encouragement in the preparation of this paper. I want to especially thank him for helping me understand and carry out the cohomological and infinitesimal computations which appear in Sections 7 and 8.

Finally, I would like to thank Tomohide Terasoma for letting me know his recent rcsults, and the referee for many helpful comments and suggestions.

References

[1] J. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematics Studies, vol. 82, Princeton Univ. Press, Princeton, NJ, 1974.
[2] A. Bjömer, G. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1991) 96-126.
[3] E. Breiskorn, Sur les groups des tresses, Seminaire Bourbaki 1971/72, Lecture Notes in Mathematics, vol. 317, Springer, Berlin, 1973, pp. 21-44.
[4] K.-T. Chen, Extension of C^{∞} function algebra and Malcev completion of π_{1}, Adv. Math. 23 (1977) 181-210.
[5] K.-T. Chen, Iterated integrals, Bull. Amer. Math. Soc. (N.S.) 83 (1977) 831-879.
[6] E. Fadell, J. Van Buskirk, The braid groups of E^{2} and S^{2}, Duke Math. J. 29 (1962) 243-258.
[7] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111-118.
[8] M. Goresky, R. MacPherson, Stratified Morse Theory, Springer, Berlin, 1980.
[9] R. Hain, Classical polylogarithms, Proc. Symp. Pure Math. 55 (1994) Part 2.
[10] R. Hain, Topological arrangements, preprint.
[II] R. Hain, R. MacPherson, Higher logarithms, Ill. J. Math. 34 (1990) 392-475.
[12] T. Jiang, S. Yau, Topological and differentiable structures of the complement of an arrangement of hyperplanes, Proc. Symp. Pure Math. 54 (1993) Part 2.
[13] T. Kohno, Linear representations of braid groups and classical Yang-Baxter equations, Contemp. Math. 78 (1988) 339-363.
[14] A. Leibman, Fiber bundles with degenerations and their applications to computing fundamental groups, Geometriae Dedicata 48 (1993) 93-126.
[15] P. Orlik, Introduction to arrangements, CBMS, Regional Conference Series in Mathematics, vol. 72, 1988.
[16] R. Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982) 103-108.
[17] R. Randell, The fundamental group of the complement of a union of complex hyperplanes: correction, Invent. Math. 80 (1985) 467-468.
[18] K. Kandell, The fundamental group of the complement of a union of complex hyperplanes: correction, unpublished manuscript.
[19] J.-P. Serre, Lie Algebras and Lie Groups, Lecture Notes in Mathematics, Springer, Berlin, 1992.
[20] D. Sullivan, On the intersection ring of compact 3-manifolds, Topology 14 (1975) 275-277.
[21] D. Sullivan, Infinitesimal computations in topology, Publ. IHES 47 (1977) 269-331.
[22] T. Terasoma, Fundamental groups of moduli spaces of hyperplane configurations, preprint.
[23] G. Whitehead, Elements of Homotopy Theory, Springer, Berlin, 1978.

[^0]: * E-mail: moulton@mathematik.uni-bielefeld.de.

[^1]: ${ }^{1}$ It appears that Tomohide Terasoma from Tokyo Metropolitan University has recently proven this conjecture to be true [22].

[^2]: ${ }^{2}$ The affine group $A G L_{m+1}(\mathbb{C})$ is defined to be the stabilizer of the line at infinity in $P G L_{m+1}(\mathbb{C})$. Hence, $A G L_{m+1}(\mathbb{C})$ is the semidirect product of $G L_{m}(\mathbb{C})$ by \mathbb{C}^{m}.

[^3]: ${ }^{3}$ Note that when k is equal to n then F_{k} is equal to $G F_{n}^{2}$.

[^4]: ${ }^{4}$ See Section 6 for the definition of F_{k}.

